Clin Cancer Res. 2015 Nov 03. doi: 10.1158/1078-0432.CCR-15-0656. [Epub ahead of print]

Treatment response assessment in IDH-mutant glioma patients by non-invasive 3D functional Spectroscopic Mapping of 2-Hydroxyglutarate

Andronesi OC, Loebel F, Bogner W, Marjanska M, Vander Heiden MG, Iafrate AJ, Dietrich J, Batchelor T, Gerstner ER, Kaelin W Jr, Chi AS, Rosen B, Cahill DP.

Abstract

PURPOSE: Measurements of objective response rates are critical to evaluate new glioma therapies. The hallmark metabolic alteration in gliomas with mutant isocitrate dehydrogenase (IDH) is the overproduction of oncometabolite 2-hydroxyglutarate (2HG), which plays a key role in malignant transformation. 2HG represents an ideal biomarker to probe treatment response in IDH-mutant glioma patients, and we hypothesized a decrease in 2HG levels would be measureable by in vivo magnetic resonance spectroscopy (MRS) as a result of antitumor therapy.
EXPERIMENTAL DESIGN: We report a prospective longitudinal imaging study performed in 25 IDH-mutant glioma patients receiving adjuvant radiation and chemotherapy. A newly developed 3D MRS imaging was used to non-invasively image 2HG. Paired Student's T-test was used to compare pre- and post-treatment tumor 2HG values. Test-retest measurements were performed to determine the threshold for 2HG functional spectroscopic maps (fSM). Univariate and multivariate regression were performed to correlate 2HG changes with Karnofsky performance score (KPS).
RESULTS: We found that mean 2HG (2HG/Cre) levels decreased significantly (median = 48.1%, CI = 27.3-56.5%, P = 0.007) in the post-treatment scan. The volume of decreased 2HG correlates (R2 = 0.88, P = 0.002) with clinical status evaluated by KPS.
CONCLUSIONS: We demonstrate that dynamic measurements of 2HG are feasible by 3D fSM, and the decrease of 2HG levels can monitor treatment response in patients with IDH-mutant gliomas. Our results indicate that quantitative in vivo 2HG imaging may be employed for precision medicine and early response assessment in clinical trials of therapies targeting IDH-mutant gliomas.

PMID: 26534967