Magn Reson Med. 2016 Feb 15. doi: 10.1002/mrm.26116. [Epub ahead of print]

Polymer thick film technology for improved simultaneous dEEG/MRI recording: Safety and MRI data quality

Poulsen C, Wakeman DG, Atefi SR, Luu P, Konyn A, Bonmassar G.

Abstract

PURPOSE: To develop a 256-channel dense-array electroencephalography (dEEG) sensor net (the Ink-Net) using high-resistance polymer thick film (PTF) technology to improve safety and data quality during simultaneous dEEG/MRI.
METHODS: Heating safety was assessed with temperature measurements in an anthropomorphic head phantom during a 30-min, induced-heating scan at 7T. MRI quality assessment used B1 field mapping and functional MRI (fMRI) retinotopic scans in three humans at 3T. Performance of the 256-channel PTF Ink-Net was compared with a 256-channel MR-conditional copper-wired electroencephalography (EEG) net and to scans with no sensor net. A visual evoked potential paradigm assessed EEG quality within and outside the 3T scanner.
RESULTS: Phantom temperature measurements revealed nonsignificant heating (ISO 10974) in the presence of either EEG net. In human B1 field and fMRI scans, the Ink-Net showed greatly reduced cross-modal artifact and less signal degradation than the copper-wired net, and comparable quality to MRI without sensor net. Cross-modal ballistocardiogram artifact in the EEG was comparable for both nets.
CONCLUSION: High-resistance PTF technology can be effectively implemented in a 256-channel dEEG sensor net for MR conditional use at 7T and with significantly improved structural and fMRI data quality as assessed at 3T. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc.

PMID: 26876960