Magn Reson Med. 2016 May 25. doi: 10.1002/mrm.26271. [Epub ahead of print]

Simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) with direct-spiral slice-GRAPPA (ds-SG) reconstruction

Ye H, Cauley SF, Gagoski B, Bilgic B, Ma D, Jiang Y, Du YP, Griswold MA, Wald LL, Setsompop K.

Abstract

PURPOSE: To develop a reconstruction method to improve SMS-MRF, in which slice acceleration is used in conjunction with highly undersampled in-plane acceleration to speed up MRF acquisition.
METHODS: In this work two methods are employed to efficiently perform the simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) data acquisition and the direct-spiral slice-GRAPPA (ds-SG) reconstruction. First, the lengthy training data acquisition is shortened by employing the through-time/through-k-space approach, in which similar k-space locations within and across spiral interleaves are grouped and are associated with a single set of kernel. Second, inversion recovery preparation (IR prepped), variable flip angle (FA), and repetition time (TR) are used for the acquisition of the training data, to increase signal variation and to improve the conditioning of the kernel fitting.
RESULTS: The grouping of k-space locations enables a large reduction in the number of kernels required, and the IR-prepped training data with variable FA and TR provide improved ds-SG kernels and reconstruction performance. With direct-spiral slice-GRAPPA, tissue parameter maps comparable to that of conventional MRF were obtained at multiband (MB) = 3 acceleration using t-blipped SMS-MRF acquisition with 32-channel head coil at 3 Tesla (T).
CONCLUSIONS: The proposed reconstruction scheme allows MB = 3 accelerated SMS-MRF imaging with high-quality T1 , T2 , and off-resonance maps, and can be used to significantly shorten MRF acquisition and aid in its adoption in neuro-scientific and clinical settings. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc.

PMID: 27220881