Cereb Cortex. 2013 Sep 27. doi: 10.1093/cercor/bht260. [Epub ahead of print]

Large-Scale Brain Networks of the Human Left Temporal Pole: A Functional Connectivity MRI Study

Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R, Ding SL, Dickerson BC.

Abstract

The most rostral portion of the human temporal cortex, the temporal pole (TP), has been described as 'enigmatic' because its functional neuroanatomy remains unclear. Comparative anatomy studies are only partially helpful, because the human TP is larger and cytoarchitectonically more complex than in nonhuman primates. Considered by Brodmann as a single area (BA 38), the human TP has been recently parceled into an array of cytoarchitectonic subfields. In order to clarify the functional connectivity of subregions of the TP, we undertook a study of 172 healthy adults using resting-state functional connectivity MRI. Remarkably, a hierarchical cluster analysis performed to group the seeds into distinct subsystems according to their large-scale functional connectivity grouped 87.5% of the seeds according to the recently described cytoarchitectonic subregions of the TP. Based on large-scale functional connectivity, there appear to be 4 major subregions of the TP: 1) dorsal, with predominant connectivity to auditory/somatosensory and language networks; 2) ventromedial, predominantly connected to visual networks; 3) medial, connected to paralimbic structures; and 4) anterolateral, connected to the default-semantic network. The functional connectivity of the human TP, far more complex than its known anatomic connectivity in monkey, is concordant with its hypothesized role as a cortical convergence zone.

PMID: 24068551