mne.Covariance(data, names, bads, projs, nfree, eig=None, eigvec=None, method=None, loglik=None)[source]¶Noise covariance matrix.
Warning
This class should not be instantiated directly, but instead should be created using a covariance reading or computation function.
| Parameters: | data : array-like 
 names : list of str 
 bads : list of str 
 projs : list 
 nfree : int 
 eig : array-like | None 
 eigvec : array-like | None 
 method : str | None 
 loglik : float 
  | 
|---|
Attributes
data | 
Numpy array of Noise covariance matrix. | 
ch_names | 
Channel names. | 
nfree | 
Number of degrees of freedom. | 
Methods
__add__(cov) | 
Add Covariance taking into account number of degrees of freedom. | 
__contains__((k) -> True if D has a key k, …) | 
|
__getitem__ | 
x.__getitem__(y) <==> x[y] | 
__iter__() <==> iter(x) | 
|
__len__() <==> len(x) | 
|
as_diag() | 
Set covariance to be processed as being diagonal. | 
clear(() -> None.  Remove all items from D.) | 
|
copy() | 
Copy the Covariance object. | 
fromkeys(…) | 
v defaults to None. | 
get((k[,d]) -> D[k] if k in D, …) | 
|
has_key((k) -> True if D has a key k, else False) | 
|
items(() -> list of D’s (key, value) pairs, …) | 
|
iteritems(() -> an iterator over the (key, …) | 
|
iterkeys(() -> an iterator over the keys of D) | 
|
itervalues(…) | 
|
keys(() -> list of D’s keys) | 
|
plot(info[, exclude, colorbar, proj, …]) | 
Plot Covariance data. | 
pop((k[,d]) -> v, …) | 
If key is not found, d is returned if given, otherwise KeyError is raised | 
popitem(() -> (k, v), …) | 
2-tuple; but raise KeyError if D is empty. | 
save(fname) | 
Save covariance matrix in a FIF file. | 
setdefault((k[,d]) -> D.get(k,d), …) | 
|
update(([E, …) | 
If E present and has a .keys() method, does: for k in E: D[k] = E[k] | 
values(() -> list of D’s values) | 
|
viewitems(…) | 
|
viewkeys(…) | 
|
viewvalues(…) | 
__contains__(k) → True if D has a key k, else False¶__getitem__()¶x.__getitem__(y) <==> x[y]
__iter__() <==> iter(x)¶__len__() <==> len(x)¶as_diag()[source]¶Set covariance to be processed as being diagonal.
| Returns: | cov : dict 
  | 
|---|
Notes
This function allows creation of inverse operators equivalent to using the old “–diagnoise” mne option.
ch_names¶Channel names.
clear() → None.  Remove all items from D.¶data¶Numpy array of Noise covariance matrix.
fromkeys(S[, v]) → New dict with keys from S and values equal to v.¶v defaults to None.
get(k[, d]) → D[k] if k in D, else d.  d defaults to None.¶has_key(k) → True if D has a key k, else False¶items() → list of D’s (key, value) pairs, as 2-tuples¶iteritems() → an iterator over the (key, value) items of D¶iterkeys() → an iterator over the keys of D¶itervalues() → an iterator over the values of D¶keys() → list of D’s keys¶nfree¶Number of degrees of freedom.
plot(info, exclude=[], colorbar=True, proj=False, show_svd=True, show=True, verbose=None)[source]¶Plot Covariance data.
| Parameters: | info: dict 
 exclude : list of string | str 
 colorbar : bool 
 proj : bool 
 show_svd : bool 
 show : bool 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | fig_cov : instance of matplotlib.pyplot.Figure 
 fig_svd : instance of matplotlib.pyplot.Figure | None 
  | 
pop(k[, d]) → v, remove specified key and return the corresponding value.¶If key is not found, d is returned if given, otherwise KeyError is raised
popitem() → (k, v), remove and return some (key, value) pair as a¶2-tuple; but raise KeyError if D is empty.
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D¶update([E, ]**F) → None.  Update D from dict/iterable E and F.¶If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values() → list of D’s values¶viewitems() → a set-like object providing a view on D’s items¶viewkeys() → a set-like object providing a view on D’s keys¶viewvalues() → an object providing a view on D’s values¶