This is the classes and functions reference of MNE-Python. Functions are
grouped thematically by analysis stage. Functions and classes that are not
below a module heading are found in the mne namespace.
MNE-Python also provides multiple command-line scripts that can be called directly from a terminal, see Command line tools using Python.
MNE software for MEG and EEG data analysis.
io.Raw(fname[, allow_maxshield, preload, …]) | 
Raw data in FIF format. | 
io.RawFIF | 
alias of Raw | 
io.RawArray(data, info[, first_samp, verbose]) | 
Raw object from numpy array. | 
io.BaseRaw(info[, preload, first_samps, …]) | 
Base class for Raw data. | 
Annotations(onset, duration, description[, …]) | 
Annotation object for annotating segments of raw data. | 
AcqParserFIF(info) | 
Parser for Elekta data acquisition settings. | 
BaseEpochs(info, data, events[, event_id, …]) | 
Abstract base class for Epochs-type classes. | 
Epochs(raw, events[, event_id, tmin, tmax, …]) | 
Epochs extracted from a Raw instance. | 
Evoked(fname[, condition, proj, kind, …]) | 
Evoked data. | 
SourceSpaces(source_spaces[, info]) | 
Represent a list of source space. | 
Forward | 
Forward class to represent info from forward solution. | 
SourceEstimate(data[, vertices, tmin, …]) | 
Container for surface source estimates. | 
VolSourceEstimate(data[, vertices, tmin, …]) | 
Container for volume source estimates. | 
MixedSourceEstimate(data[, vertices, tmin, …]) | 
Container for mixed surface and volume source estimates. | 
Covariance(data, names, bads, projs, nfree) | 
Noise covariance matrix. | 
Dipole(times, pos, amplitude, ori, gof[, name]) | 
Dipole class for sequential dipole fits. | 
DipoleFixed(info, data, times, nave, …[, …]) | 
Dipole class for fixed-position dipole fits. | 
Label(vertices[, pos, values, hemi, …]) | 
A FreeSurfer/MNE label with vertices restricted to one hemisphere. | 
BiHemiLabel(lh, rh[, name, color]) | 
A freesurfer/MNE label with vertices in both hemispheres. | 
Transform(fro, to[, trans]) | 
A transform. | 
Report([info_fname, subjects_dir, subject, …]) | 
Object for rendering HTML. | 
Info | 
Information about the recording. | 
Projection | 
Projection vector. | 
preprocessing.ICA([n_components, …]) | 
M/EEG signal decomposition using Independent Component Analysis (ICA). | 
preprocessing.Xdawn([n_components, …]) | 
Implementation of the Xdawn Algorithm. | 
decoding.CSP([n_components, reg, log, …]) | 
M/EEG signal decomposition using the Common Spatial Patterns (CSP). | 
decoding.FilterEstimator(info, l_freq, h_freq) | 
Estimator to filter RtEpochs. | 
decoding.GeneralizationAcrossTime([picks, …]) | 
Generalize across time and conditions. | 
decoding.PSDEstimator([sfreq, fmin, fmax, …]) | 
Compute power spectrum density (PSD) using a multi-taper method. | 
decoding.Scaler([info, scalings, with_mean, …]) | 
Standardize channel data. | 
decoding.TimeDecoding([picks, cv, clf, …]) | 
Train and test a series of classifiers at each time point. | 
realtime.RtEpochs(client, event_id, tmin, tmax) | 
Realtime Epochs. | 
realtime.RtClient(host[, cmd_port, …]) | 
Realtime Client. | 
realtime.MockRtClient(raw[, verbose]) | 
Mock Realtime Client. | 
realtime.FieldTripClient([info, host, port, …]) | 
Realtime FieldTrip client. | 
realtime.StimServer([port, n_clients]) | 
Stimulation Server. | 
realtime.StimClient(host[, port, timeout, …]) | 
Stimulation Client. | 
get_config_path([home_dir]) | 
Get path to standard mne-python config file. | 
get_config([key, default, raise_error, home_dir]) | 
Read MNE-Python preferences from environment or config file. | 
open_docs([kind, version]) | 
Launch a new web browser tab with the MNE documentation. | 
set_log_level([verbose, return_old_level]) | 
Set the logging level. | 
set_log_file([fname, output_format, overwrite]) | 
Set the log to print to a file. | 
set_config(key, value[, home_dir, set_env]) | 
Set a MNE-Python preference key in the config file and environment. | 
sys_info([fid, show_paths]) | 
Print the system information for debugging. | 
verbose(function) | 
Verbose decorator to allow functions to override log-level. | 
init_cuda([ignore_config]) | 
Initialize CUDA functionality. | 
IO module for reading raw data.
Functions:
anonymize_info(info) | 
Anonymize measurement information in place. | 
read_raw_artemis123(input_fname[, preload, …]) | 
Read Artemis123 data as raw object. | 
read_raw_bti(pdf_fname[, config_fname, …]) | 
Raw object from 4D Neuroimaging MagnesWH3600 data. | 
read_raw_cnt(input_fname, montage[, eog, …]) | 
Read CNT data as raw object. | 
read_raw_ctf(directory[, system_clock, …]) | 
Raw object from CTF directory. | 
read_raw_edf(input_fname[, montage, eog, …]) | 
Reader function for EDF+, BDF conversion to FIF. | 
read_raw_kit(input_fname[, mrk, elp, hsp, …]) | 
Reader function for KIT conversion to FIF. | 
read_raw_nicolet(input_fname, ch_type[, …]) | 
Read Nicolet data as raw object. | 
read_raw_eeglab(input_fname[, montage, eog, …]) | 
Read an EEGLAB .set file. | 
read_raw_brainvision(vhdr_fname[, montage, …]) | 
Reader for Brain Vision EEG file. | 
read_raw_egi(input_fname[, montage, eog, …]) | 
Read EGI simple binary as raw object. | 
read_raw_fif(fname[, allow_maxshield, …]) | 
Reader function for Raw FIF data. | 
KIT module for reading raw data.
read_mrk(fname) | 
Marker Point Extraction in MEG space directly from sqd. | 
Functions:
decimate_surface(points, triangles, n_triangles) | 
Decimate surface data. | 
get_head_surf(subject[, source, …]) | 
Load the subject head surface. | 
get_meg_helmet_surf(info[, trans, verbose]) | 
Load the MEG helmet associated with the MEG sensors. | 
get_volume_labels_from_aseg(mgz_fname[, …]) | 
Return a list of names and colors of segmented volumes. | 
get_volume_labels_from_src(src, subject, …) | 
Return a list of Label of segmented volumes included in the src space. | 
parse_config(fname) | 
Parse a config file (like .ave and .cov files). | 
read_labels_from_annot(subject[, parc, …]) | 
Read labels from a FreeSurfer annotation file. | 
read_bem_solution(fname[, verbose]) | 
Read the BEM solution from a file. | 
read_bem_surfaces(fname[, patch_stats, …]) | 
Read the BEM surfaces from a FIF file. | 
read_cov(fname[, verbose]) | 
Read a noise covariance from a FIF file. | 
read_dipole(fname[, verbose]) | 
Read .dip file from Neuromag/xfit or MNE. | 
read_epochs(fname[, proj, preload, verbose]) | 
Read epochs from a fif file. | 
read_epochs_kit(input_fname, events[, …]) | 
Reader function for KIT epochs files. | 
read_epochs_eeglab(input_fname[, events, …]) | 
Reader function for EEGLAB epochs files. | 
read_events(filename[, include, exclude, …]) | 
Read events from fif or text file. | 
read_evokeds(fname[, condition, baseline, …]) | 
Read evoked dataset(s). | 
read_forward_solution(fname[, force_fixed, …]) | 
Read a forward solution a.k.a. | 
read_label(filename[, subject, color]) | 
Read FreeSurfer Label file. | 
read_morph_map(subject_from, subject_to[, …]) | 
Read morph map. | 
read_proj(fname) | 
Read projections from a FIF file. | 
read_reject_parameters(fname) | 
Read rejection parameters from .cov or .ave config file. | 
read_selection(name[, fname, info, verbose]) | 
Read channel selection from file. | 
read_source_estimate(fname[, subject]) | 
Read a soure estimate object. | 
read_source_spaces(fname[, patch_stats, verbose]) | 
Read the source spaces from a FIF file. | 
read_surface(fname[, read_metadata, …]) | 
Load a Freesurfer surface mesh in triangular format. | 
read_trans(fname) | 
Read a -trans.fif file. | 
read_tri(fname_in[, swap, verbose]) | 
Read triangle definitions from an ascii file. | 
save_stc_as_volume(fname, stc, src[, dest, …]) | 
Save a volume source estimate in a NIfTI file. | 
write_labels_to_annot(labels[, subject, …]) | 
Create a FreeSurfer annotation from a list of labels. | 
write_bem_solution(fname, bem) | 
Write a BEM model with solution. | 
write_bem_surfaces(fname, surfs) | 
Write BEM surfaces to a fiff file. | 
write_cov(fname, cov) | 
Write a noise covariance matrix. | 
write_events(filename, event_list) | 
Write events to file. | 
write_evokeds(fname, evoked) | 
Write an evoked dataset to a file. | 
write_forward_solution(fname, fwd[, …]) | 
Write forward solution to a file. | 
write_label(filename, label[, verbose]) | 
Write a FreeSurfer label. | 
write_proj(fname, projs) | 
Write projections to a FIF file. | 
write_source_spaces(fname, src[, overwrite, …]) | 
Write source spaces to a file. | 
write_surface(fname, coords, faces[, …]) | 
Write a triangular Freesurfer surface mesh. | 
write_trans(fname, trans) | 
Write a -trans.fif file. | 
io.read_info(fname[, verbose]) | 
Read measurement info from a file. | 
Classes:
mne:
EvokedArray(data, info[, tmin, comment, …]) | 
Evoked object from numpy array. | 
EpochsArray(data, info[, events, tmin, …]) | 
Epochs object from numpy array. | 
RawArray(data, info[, first_samp, verbose]) | 
Raw object from numpy array. | 
Functions:
mne:
create_info(ch_names, sfreq[, ch_types, montage]) | 
Create a basic Info instance suitable for use with create_raw. | 
Functions for fetching remote datasets.
fetch_hcp_mmp_parcellation([subjects_dir, …]) | 
Fetch the HCP-MMP parcellation. | 
MNE sample dataset.
data_path([path, force_update, update_path, …]) | 
Get path to local copy of sample dataset. | 
Brainstorm Dataset.
bst_auditory.data_path([path, force_update, …]) | 
Get path to local copy of brainstorm (bst_auditory) dataset. | 
bst_resting.data_path([path, force_update, …]) | 
Get path to local copy of brainstorm (bst_resting) dataset. | 
bst_raw.data_path([path, force_update, …]) | 
Get path to local copy of brainstorm (bst_raw) dataset. | 
MEGSIM dataset.
data_path(url[, path, force_update, …]) | 
Get path to local copy of MEGSIM dataset URL. | 
load_data([condition, data_format, …]) | 
Get path to local copy of MEGSIM dataset type. | 
SPM face dataset.
data_path([path, force_update, update_path, …]) | 
Get path to local copy of spm dataset. | 
EEG Motor Movement/Imagery Dataset.
load_data(subject, runs[, path, …]) | 
Get paths to local copies of EEGBCI dataset files. | 
Somatosensory dataset.
data_path([path, force_update, update_path, …]) | 
Get path to local copy of somato dataset. | 
Multimodal dataset.
data_path([path, force_update, update_path, …]) | 
Get path to local copy of multimodal dataset. | 
mne.datasets.visual_92_categories:
MNE visual_92_categories dataset.
data_path([path, force_update, update_path, …]) | 
Get path to local copy of visual_92_categories dataset. | 
Visualization routines.
Classes:
ClickableImage(imdata, **kwargs) | 
Display an image so you can click on it and store x/y positions. | 
Functions:
add_background_image(fig, im[, set_ratios]) | 
Add a background image to a plot. | 
compare_fiff(fname_1, fname_2[, fname_out, …]) | 
Compare the contents of two fiff files using diff and show_fiff. | 
circular_layout(node_names, node_order[, …]) | 
Create layout arranging nodes on a circle. | 
mne_analyze_colormap([limits, format]) | 
Return a colormap similar to that used by mne_analyze. | 
plot_bem([subject, subjects_dir, …]) | 
Plot BEM contours on anatomical slices. | 
plot_connectivity_circle(con, node_names[, …]) | 
Visualize connectivity as a circular graph. | 
plot_cov(cov, info[, exclude, colorbar, …]) | 
Plot Covariance data. | 
plot_dipole_amplitudes(dipoles[, colors, show]) | 
Plot the amplitude traces of a set of dipoles. | 
plot_dipole_locations(dipoles, trans, subject) | 
Plot dipole locations. | 
plot_drop_log(drop_log[, threshold, …]) | 
Show the channel stats based on a drop_log from Epochs. | 
plot_epochs(epochs[, picks, scalings, …]) | 
Visualize epochs. | 
plot_events(events[, sfreq, first_samp, …]) | 
Plot events to get a visual display of the paradigm. | 
plot_evoked(evoked[, picks, exclude, unit, …]) | 
Plot evoked data using butteryfly plots. | 
plot_evoked_image(evoked[, picks, exclude, …]) | 
Plot evoked data as images. | 
plot_evoked_topo(evoked[, layout, …]) | 
Plot 2D topography of evoked responses. | 
plot_evoked_topomap(evoked[, times, …]) | 
Plot topographic maps of specific time points of evoked data. | 
plot_evoked_joint(evoked[, times, title, …]) | 
Plot evoked data as butterfly plot and add topomaps for time points. | 
plot_evoked_field(evoked, surf_maps[, time, …]) | 
Plot MEG/EEG fields on head surface and helmet in 3D. | 
plot_evoked_white(evoked, noise_cov[, show]) | 
Plot whitened evoked response. | 
plot_filter(h, sfreq[, freq, gain, title, …]) | 
Plot properties of a filter. | 
plot_head_positions(pos[, mode, cmap, …]) | 
Plot head positions. | 
plot_ideal_filter(freq, gain[, axes, title, …]) | 
Plot an ideal filter response. | 
plot_compare_evokeds(evokeds[, picks, gfp, …]) | 
Plot evoked time courses for one or multiple channels and conditions. | 
plot_ica_sources(ica, inst[, picks, …]) | 
Plot estimated latent sources given the unmixing matrix. | 
plot_ica_components(ica[, picks, ch_type, …]) | 
Project unmixing matrix on interpolated sensor topogrpahy. | 
plot_ica_properties(ica, inst[, picks, …]) | 
Display component properties. | 
plot_ica_scores(ica, scores[, exclude, …]) | 
Plot scores related to detected components. | 
plot_ica_overlay(ica, inst[, exclude, …]) | 
Overlay of raw and cleaned signals given the unmixing matrix. | 
plot_epochs_image(epochs[, picks, sigma, …]) | 
Plot Event Related Potential / Fields image. | 
plot_layout(layout[, show]) | 
Plot the sensor positions. | 
plot_montage(montage[, scale_factor, …]) | 
Plot a montage. | 
plot_projs_topomap(projs[, layout, cmap, …]) | 
Plot topographic maps of SSP projections. | 
plot_raw(raw[, events, duration, start, …]) | 
Plot raw data. | 
plot_raw_psd(raw[, tmin, tmax, fmin, fmax, …]) | 
Plot the power spectral density across channels. | 
plot_sensors(info[, kind, ch_type, title, …]) | 
Plot sensors positions. | 
plot_snr_estimate(evoked, inv[, show]) | 
Plot a data SNR estimate. | 
plot_source_estimates(stc[, subject, …]) | 
Plot SourceEstimates with PySurfer. | 
plot_sparse_source_estimates(src, stcs[, …]) | 
Plot source estimates obtained with sparse solver. | 
plot_tfr_topomap(tfr[, tmin, tmax, fmin, …]) | 
Plot topographic maps of specific time-frequency intervals of TFR data. | 
plot_topo_image_epochs(epochs[, layout, …]) | 
Plot Event Related Potential / Fields image on topographies. | 
plot_topomap(data, pos[, vmin, vmax, cmap, …]) | 
Plot a topographic map as image. | 
plot_trans(info[, trans, subject, …]) | 
Plot head, sensor, and source space alignment in 3D. | 
snapshot_brain_montage(fig, montage[, …]) | 
Take a snapshot of a Mayavi Scene and project channels onto 2d coords. | 
show_fiff(fname[, indent, read_limit, …]) | 
Show FIFF information. | 
Projections:
compute_proj_epochs(epochs[, n_grad, n_mag, …]) | 
Compute SSP (spatial space projection) vectors on Epochs. | 
compute_proj_evoked(evoked[, n_grad, n_mag, …]) | 
Compute SSP (spatial space projection) vectors on Evoked. | 
compute_proj_raw(raw[, start, stop, …]) | 
Compute SSP (spatial space projection) vectors on Raw. | 
read_proj(fname) | 
Read projections from a FIF file. | 
write_proj(fname, projs) | 
Write projections to a FIF file. | 
fix_stim_artifact(inst[, events, event_id, …]) | 
Eliminate stimulation’s artifacts from instance. | 
make_eeg_average_ref_proj(info[, activate, …]) | 
Create an EEG average reference SSP projection vector. | 
Manipulate channels and set sensors locations for processing and plotting:
Classes:
Layout(box, pos, names, ids, kind) | 
Sensor layouts. | 
Montage(pos, ch_names, kind, selection) | 
Montage for standard EEG electrode locations. | 
DigMontage([hsp, hpi, elp, point_names, …]) | 
Montage for digitized electrode and headshape position data. | 
Functions:
fix_mag_coil_types(info) | 
Fix magnetometer coil types. | 
read_montage(kind[, ch_names, path, unit, …]) | 
Read a generic (built-in) montage. | 
read_dig_montage([hsp, hpi, elp, …]) | 
Read subject-specific digitization montage from a file. | 
read_layout(kind[, path, scale]) | 
Read layout from a file. | 
find_layout(info[, ch_type, exclude]) | 
Choose a layout based on the channels in the info ‘chs’ field. | 
make_eeg_layout(info[, radius, width, …]) | 
Create .lout file from EEG electrode digitization. | 
make_grid_layout(info[, picks, n_col]) | 
Generate .lout file for custom data, i.e., ICA sources. | 
read_ch_connectivity(fname[, picks]) | 
Parse FieldTrip neighbors .mat file. | 
equalize_channels(candidates[, verbose]) | 
Equalize channel picks for a collection of MNE-Python objects. | 
rename_channels(info, mapping) | 
Rename channels. | 
generate_2d_layout(xy[, w, h, pad, …]) | 
Generate a custom 2D layout from xy points. | 
Preprocessing with artifact detection, SSP, and ICA.
compute_proj_ecg(raw[, raw_event, tmin, …]) | 
Compute SSP/PCA projections for ECG artifacts. | 
compute_proj_eog(raw[, raw_event, tmin, …]) | 
Compute SSP/PCA projections for EOG artifacts. | 
create_ecg_epochs(raw[, ch_name, event_id, …]) | 
Conveniently generate epochs around ECG artifact events. | 
create_eog_epochs(raw[, ch_name, event_id, …]) | 
Conveniently generate epochs around EOG artifact events. | 
find_ecg_events(raw[, event_id, ch_name, …]) | 
Find ECG peaks. | 
find_eog_events(raw[, event_id, l_freq, …]) | 
Locate EOG artifacts. | 
ica_find_ecg_events(raw, ecg_source[, …]) | 
Find ECG peaks from one selected ICA source. | 
ica_find_eog_events(raw[, eog_source, …]) | 
Locate EOG artifacts from one selected ICA source. | 
infomax(data[, weights, l_rate, block, …]) | 
Run (extended) Infomax ICA decomposition on raw data. | 
maxwell_filter(raw[, origin, int_order, …]) | 
Apply Maxwell filter to data using multipole moments. | 
read_ica(fname) | 
Restore ICA solution from fif file. | 
run_ica(raw, n_components[, …]) | 
Run ICA decomposition on raw data and identify artifact sources. | 
corrmap(icas, template[, threshold, label, …]) | 
Find similar Independent Components across subjects by map similarity. | 
EEG referencing:
add_reference_channels(inst, ref_channels[, …]) | 
Add reference channels to data that consists of all zeros. | 
set_bipolar_reference(inst, anode, cathode) | 
Rereference selected channels using a bipolar referencing scheme. | 
set_eeg_reference(inst[, ref_channels, …]) | 
Specify which reference to use for EEG data. | 
IIR and FIR filtering and resampling functions.
construct_iir_filter(iir_params[, f_pass, …]) | 
Use IIR parameters to get filtering coefficients. | 
create_filter(data, sfreq, l_freq, h_freq[, …]) | 
Create a FIR or IIR filter. | 
estimate_ringing_samples(system[, max_try]) | 
Estimate filter ringing. | 
filter_data(data, sfreq, l_freq, h_freq[, …]) | 
Filter a subset of channels. | 
notch_filter(x, Fs, freqs[, filter_length, …]) | 
Notch filter for the signal x. | 
resample(x, up, down[, npad, axis, window, …]) | 
Resample an array. | 
Head position estimation:
filter_chpi(raw[, include_line, verbose]) | 
Remove cHPI and line noise from data. | 
head_pos_to_trans_rot_t(quats) | 
Convert Maxfilter-formatted head position quaternions. | 
read_head_pos(fname) | 
Read MaxFilter-formatted head position parameters. | 
write_head_pos(fname, pos) | 
Write MaxFilter-formatted head position parameters. | 
quat_to_rot(quat) | 
Convert a set of quaternions to rotations. | 
rot_to_quat(rot) | 
Convert a set of rotations to quaternions. | 
concatenate_events(events, first_samps, …) | 
Concatenate event lists to be compatible with concatenate_raws. | 
find_events(raw[, stim_channel, output, …]) | 
Find events from raw file. | 
find_stim_steps(raw[, pad_start, pad_stop, …]) | 
Find all steps in data from a stim channel. | 
make_fixed_length_events(raw, id[, start, …]) | 
Make a set of events separated by a fixed duration. | 
merge_events(events, ids, new_id[, …]) | 
Merge a set of events. | 
parse_config(fname) | 
Parse a config file (like .ave and .cov files). | 
pick_events(events[, include, exclude, step]) | 
Select some events. | 
read_events(filename[, include, exclude, …]) | 
Read events from fif or text file. | 
write_events(filename, event_list) | 
Write events to file. | 
concatenate_epochs(epochs_list) | 
Concatenate a list of epochs into one epochs object. | 
define_target_events(events, reference_id, …) | 
Define new events by co-occurrence of existing events. | 
add_channels_epochs(epochs_list[, name, …]) | 
Concatenate channels, info and data from two Epochs objects. | 
average_movements(epochs[, head_pos, …]) | 
Average data using Maxwell filtering, transforming using head positions. | 
combine_event_ids(epochs, old_event_ids, …) | 
Collapse event_ids from an epochs instance into a new event_id. | 
equalize_epoch_counts(epochs_list[, method]) | 
Equalize the number of trials in multiple Epoch instances. | 
combine_evoked(all_evoked, weights) | 
Merge evoked data by weighted addition or subtraction. | 
concatenate_raws(raws[, preload, events_list]) | 
Concatenate raw instances as if they were continuous. | 
equalize_channels(candidates[, verbose]) | 
Equalize channel picks for a collection of MNE-Python objects. | 
grand_average(all_inst[, interpolate_bads, …]) | 
Make grand average of a list evoked or AverageTFR data. | 
pick_channels(ch_names, include[, exclude]) | 
Pick channels by names. | 
pick_channels_cov(orig[, include, exclude]) | 
Pick channels from covariance matrix. | 
pick_channels_forward(orig[, include, …]) | 
Pick channels from forward operator. | 
pick_channels_regexp(ch_names, regexp) | 
Pick channels using regular expression. | 
pick_types(info[, meg, eeg, stim, eog, ecg, …]) | 
Pick channels by type and names. | 
pick_types_forward(orig[, meg, eeg, …]) | 
Pick by channel type and names from a forward operator. | 
pick_info(info[, sel, copy]) | 
Restrict an info structure to a selection of channels. | 
read_epochs(fname[, proj, preload, verbose]) | 
Read epochs from a fif file. | 
read_reject_parameters(fname) | 
Read rejection parameters from .cov or .ave config file. | 
read_selection(name[, fname, info, verbose]) | 
Read channel selection from file. | 
rename_channels(info, mapping) | 
Rename channels. | 
compute_covariance(epochs[, …]) | 
Estimate noise covariance matrix from epochs. | 
compute_raw_covariance(raw[, tmin, tmax, …]) | 
Estimate noise covariance matrix from a continuous segment of raw data. | 
make_ad_hoc_cov(info[, verbose]) | 
Create an ad hoc noise covariance. | 
read_cov(fname[, verbose]) | 
Read a noise covariance from a FIF file. | 
write_cov(fname, cov) | 
Write a noise covariance matrix. | 
regularize(cov, info[, mag, grad, eeg, …]) | 
Regularize noise covariance matrix. | 
Step by step instructions for using gui.coregistration():
gui.coregistration([tabbed, split, …]) | 
Coregister an MRI with a subject’s head shape. | 
gui.fiducials([subject, fid_file, subjects_dir]) | 
Set the fiducials for an MRI subject. | 
create_default_subject([mne_root, fs_home, …]) | 
Create an average brain subject for subjects without structural MRI. | 
scale_mri(subject_from, subject_to, scale[, …]) | 
Create a scaled copy of an MRI subject. | 
scale_bem(subject_to, bem_name[, …]) | 
Scale a bem file. | 
scale_labels(subject_to[, pattern, …]) | 
Scale labels to match a brain that was previously created by scaling. | 
scale_source_space(subject_to, src_name[, …]) | 
Scale a source space for an mri created with scale_mri(). | 
mne:
Functions:
add_source_space_distances(src[, …]) | 
Compute inter-source distances along the cortical surface. | 
apply_forward(fwd, stc, info[, start, stop, …]) | 
Project source space currents to sensor space using a forward operator. | 
apply_forward_raw(fwd, stc, info[, start, …]) | 
Project source space currents to sensor space using a forward operator. | 
average_forward_solutions(fwds[, weights]) | 
Average forward solutions. | 
convert_forward_solution(fwd[, surf_ori, …]) | 
Convert forward solution between different source orientations. | 
make_bem_model(subject[, ico, conductivity, …]) | 
Create a BEM model for a subject. | 
make_bem_solution(surfs[, verbose]) | 
Create a BEM solution using the linear collocation approach. | 
make_forward_dipole(dipole, bem, info[, …]) | 
Convert dipole object to source estimate and calculate forward operator. | 
make_forward_solution(info, trans, src, bem) | 
Calculate a forward solution for a subject. | 
make_field_map(evoked[, trans, subject, …]) | 
Compute surface maps used for field display in 3D. | 
make_sphere_model([r0, head_radius, info, …]) | 
Create a spherical model for forward solution calculation. | 
morph_source_spaces(src_from, subject_to[, …]) | 
Morph an existing source space to a different subject. | 
read_bem_surfaces(fname[, patch_stats, …]) | 
Read the BEM surfaces from a FIF file. | 
read_forward_solution(fname[, force_fixed, …]) | 
Read a forward solution a.k.a. | 
read_trans(fname) | 
Read a -trans.fif file. | 
read_source_spaces(fname[, patch_stats, verbose]) | 
Read the source spaces from a FIF file. | 
read_surface(fname[, read_metadata, …]) | 
Load a Freesurfer surface mesh in triangular format. | 
sensitivity_map(fwd[, projs, ch_type, mode, …]) | 
Compute sensitivity map. | 
setup_source_space(subject[, fname, …]) | 
Set up bilateral hemisphere surface-based source space with subsampling. | 
setup_volume_source_space([subject, fname, …]) | 
Set up a volume source space with grid spacing or discrete source space. | 
write_bem_surfaces(fname, surfs) | 
Write BEM surfaces to a fiff file. | 
write_trans(fname, trans) | 
Write a -trans.fif file. | 
fit_sphere_to_headshape(info[, dig_kinds, …]) | 
Fit a sphere to the headshape points to determine head center. | 
get_fitting_dig(info[, dig_kinds, verbose]) | 
Get digitization points suitable for sphere fitting. | 
make_watershed_bem(subject[, subjects_dir, …]) | 
Create BEM surfaces using the FreeSurfer watershed algorithm. | 
make_flash_bem(subject[, overwrite, show, …]) | 
Create 3-Layer BEM model from prepared flash MRI images. | 
convert_flash_mris(subject[, flash30, …]) | 
Convert DICOM files for use with make_flash_bem. | 
restrict_forward_to_label(fwd, labels) | 
Restrict forward operator to labels. | 
restrict_forward_to_stc(fwd, stc) | 
Restrict forward operator to active sources in a source estimate. | 
Transform(fro, to[, trans]) | 
A transform. | 
complete_surface_info(surf[, …]) | 
Complete surface information. | 
Linear inverse solvers based on L2 Minimum Norm Estimates (MNE).
Classes:
InverseOperator | 
InverseOperator class to represent info from inverse operator. | 
Functions:
apply_inverse(evoked, inverse_operator[, …]) | 
Apply inverse operator to evoked data. | 
apply_inverse_epochs(epochs, …[, method, …]) | 
Apply inverse operator to Epochs. | 
apply_inverse_raw(raw, inverse_operator, lambda2) | 
Apply inverse operator to Raw data. | 
compute_source_psd(raw, inverse_operator[, …]) | 
Compute source power spectrum density (PSD). | 
compute_source_psd_epochs(epochs, …[, …]) | 
Compute source power spectrum density (PSD) from Epochs. | 
compute_rank_inverse(inv) | 
Compute the rank of a linear inverse operator (MNE, dSPM, etc.). | 
estimate_snr(evoked, inv[, verbose]) | 
Estimate the SNR as a function of time for evoked data. | 
make_inverse_operator(info, forward, noise_cov) | 
Assemble inverse operator. | 
read_inverse_operator(fname[, verbose]) | 
Read the inverse operator decomposition from a FIF file. | 
source_band_induced_power(epochs, …[, …]) | 
Compute source space induced power in given frequency bands. | 
source_induced_power(epochs, …[, label, …]) | 
Compute induced power and phase lock. | 
write_inverse_operator(fname, inv[, verbose]) | 
Write an inverse operator to a FIF file. | 
point_spread_function(inverse_operator, …) | 
Compute point-spread functions (PSFs) for linear estimators. | 
cross_talk_function(inverse_operator, …[, …]) | 
Compute cross-talk functions (CTFs) for linear estimators. | 
Non-Linear sparse inverse solvers.
mixed_norm(evoked, forward, noise_cov, alpha) | 
Mixed-norm estimate (MxNE) and iterative reweighted MxNE (irMxNE). | 
tf_mixed_norm(evoked, forward, noise_cov, …) | 
Time-Frequency Mixed-norm estimate (TF-MxNE). | 
gamma_map(evoked, forward, noise_cov, alpha) | 
Hierarchical Bayes (Gamma-MAP) sparse source localization method. | 
Beamformers for source localization.
lcmv(evoked, forward, noise_cov, data_cov[, …]) | 
Linearly Constrained Minimum Variance (LCMV) beamformer. | 
lcmv_epochs(epochs, forward, noise_cov, data_cov) | 
Linearly Constrained Minimum Variance (LCMV) beamformer. | 
lcmv_raw(raw, forward, noise_cov, data_cov) | 
Linearly Constrained Minimum Variance (LCMV) beamformer. | 
dics(evoked, forward, noise_csd, data_csd[, …]) | 
Dynamic Imaging of Coherent Sources (DICS). | 
dics_epochs(epochs, forward, noise_csd, data_csd) | 
Dynamic Imaging of Coherent Sources (DICS). | 
dics_source_power(info, forward, noise_csds, …) | 
Dynamic Imaging of Coherent Sources (DICS). | 
rap_music(evoked, forward, noise_cov[, …]) | 
RAP-MUSIC source localization method. | 
mne:
Functions:
fit_dipole(evoked, cov, bem[, trans, …]) | 
Fit a dipole. | 
Single-dipole functions and classes.
Functions:
get_phantom_dipoles([kind]) | 
Get standard phantom dipole locations and orientations. | 
compute_morph_matrix(subject_from, …[, …]) | 
Get a matrix that morphs data from one subject to another. | 
extract_label_time_course(stcs, labels, src) | 
Extract label time course for lists of labels and source estimates. | 
grade_to_tris(grade[, verbose]) | 
Get tris defined for a certain grade. | 
grade_to_vertices(subject, grade[, …]) | 
Convert a grade to source space vertices for a given subject. | 
grow_labels(subject, seeds, extents, hemis) | 
Generate circular labels in source space with region growing. | 
label_sign_flip(label, src) | 
Compute sign for label averaging. | 
morph_data(subject_from, subject_to, stc_from) | 
Morph a source estimate from one subject to another. | 
morph_data_precomputed(subject_from, …) | 
Morph source estimate between subjects using a precomputed matrix. | 
read_labels_from_annot(subject[, parc, …]) | 
Read labels from a FreeSurfer annotation file. | 
read_dipole(fname[, verbose]) | 
Read .dip file from Neuromag/xfit or MNE. | 
read_label(filename[, subject, color]) | 
Read FreeSurfer Label file. | 
read_source_estimate(fname[, subject]) | 
Read a soure estimate object. | 
save_stc_as_volume(fname, stc, src[, dest, …]) | 
Save a volume source estimate in a NIfTI file. | 
split_label(label[, parts, subject, …]) | 
Split a Label into two or more parts. | 
stc_to_label(stc[, src, smooth, connected, …]) | 
Compute a label from the non-zero sources in an stc object. | 
transform_surface_to(surf, dest, trans[, copy]) | 
Transform surface to the desired coordinate system. | 
vertex_to_mni(vertices, hemis, subject[, …]) | 
Convert the array of vertices for a hemisphere to MNI coordinates. | 
write_labels_to_annot(labels[, subject, …]) | 
Create a FreeSurfer annotation from a list of labels. | 
write_label(filename, label[, verbose]) | 
Write a FreeSurfer label. | 
Time frequency analysis tools.
Classes:
AverageTFR(info, data, times, freqs, nave[, …]) | 
Container for Time-Frequency data. | 
EpochsTFR(info, data, times, freqs[, …]) | 
Container for Time-Frequency data on epochs. | 
Functions that operate on mne-python objects:
csd_epochs(epochs[, mode, fmin, fmax, fsum, …]) | 
Estimate cross-spectral density from epochs. | 
psd_welch(inst[, fmin, fmax, tmin, tmax, …]) | 
Compute the power spectral density (PSD) using Welch’s method. | 
psd_multitaper(inst[, fmin, fmax, tmin, …]) | 
Compute the power spectral density (PSD) using multitapers. | 
fit_iir_model_raw(raw[, order, picks, tmin, …]) | 
Fit an AR model to raw data and creates the corresponding IIR filter. | 
tfr_morlet(inst, freqs, n_cycles[, use_fft, …]) | 
Compute Time-Frequency Representation (TFR) using Morlet wavelets. | 
tfr_multitaper(inst, freqs, n_cycles[, …]) | 
Compute Time-Frequency Representation (TFR) using DPSS tapers. | 
tfr_stockwell(inst[, fmin, fmax, n_fft, …]) | 
Time-Frequency Representation (TFR) using Stockwell Transform. | 
tfr_array_morlet(epoch_data, sfreq, frequencies) | 
Compute time-frequency transform using Morlet wavelets. | 
tfr_array_multitaper(epoch_data, sfreq, …) | 
Compute time-frequency transforms using wavelets and multitaper windows. | 
tfr_array_stockwell(data, sfreq[, fmin, …]) | 
Compute power and intertrial coherence using Stockwell (S) transform. | 
read_tfrs(fname[, condition]) | 
Read TFR datasets from hdf5 file. | 
write_tfrs(fname, tfr[, overwrite]) | 
Write a TFR dataset to hdf5. | 
Functions that operate on np.ndarray objects:
csd_array(X, sfreq[, mode, fmin, fmax, …]) | 
Estimate cross-spectral density from an array. | 
dpss_windows(N, half_nbw, Kmax[, low_bias, …]) | 
Compute Discrete Prolate Spheroidal Sequences. | 
morlet(sfreq, freqs[, n_cycles, sigma, …]) | 
Compute Morlet wavelets for the given frequency range. | 
stft(x, wsize[, tstep, verbose]) | 
STFT Short-Term Fourier Transform using a sine window. | 
istft(X[, tstep, Tx]) | 
ISTFT Inverse Short-Term Fourier Transform using a sine window. | 
stftfreq(wsize[, sfreq]) | 
Frequencies of stft transformation. | 
psd_array_multitaper(x, sfreq[, fmin, fmax, …]) | 
Compute power spectrum density (PSD) using a multi-taper method. | 
psd_array_welch(x, sfreq[, fmin, fmax, …]) | 
Compute power spectral density (PSD) using Welch’s method. | 
A module which implements the time-frequency estimation.
Morlet code inspired by Matlab code from Sheraz Khan & Brainstorm & SPM
cwt(X, Ws[, use_fft, mode, decim]) | 
Compute time freq decomposition with continuous wavelet transform. | 
morlet(sfreq, freqs[, n_cycles, sigma, …]) | 
Compute Morlet wavelets for the given frequency range. | 
Connectivity Analysis Tools.
seed_target_indices(seeds, targets) | 
Generate indices parameter for seed based connectivity analysis. | 
spectral_connectivity(data[, method, …]) | 
Compute frequency- and time-frequency-domain connectivity measures. | 
phase_slope_index(data[, indices, sfreq, …]) | 
Compute the Phase Slope Index (PSI) connectivity measure. | 
Functions for statistical analysis.
bonferroni_correction(pval[, alpha]) | 
P-value correction with Bonferroni method. | 
fdr_correction(pvals[, alpha, method]) | 
P-value correction with False Discovery Rate (FDR). | 
permutation_cluster_test(X[, threshold, …]) | 
Cluster-level statistical permutation test. | 
permutation_cluster_1samp_test(X[, …]) | 
Non-parametric cluster-level 1 sample T-test. | 
permutation_t_test(X[, n_permutations, …]) | 
One sample/paired sample permutation test based on a t-statistic. | 
spatio_temporal_cluster_test(X[, threshold, …]) | 
Non-parametric cluster-level test for spatio-temporal data. | 
spatio_temporal_cluster_1samp_test(X[, …]) | 
Non-parametric cluster-level 1 sample T-test for spatio-temporal data. | 
ttest_1samp_no_p(X[, sigma, method]) | 
Perform t-test with variance adjustment and no p-value calculation. | 
linear_regression(inst, design_matrix[, names]) | 
Fit Ordinary Least Squares regression (OLS). | 
linear_regression_raw(raw, events[, …]) | 
Estimate regression-based evoked potentials/fields by linear modeling. | 
f_oneway(*args) | 
Call scipy.stats.f_oneway, but return only f-value. | 
f_mway_rm(data, factor_levels[, effects, …]) | 
Compute M-way repeated measures ANOVA for fully balanced designs. | 
f_threshold_mway_rm(n_subjects, factor_levels) | 
Compute f-value thesholds for a two-way ANOVA. | 
summarize_clusters_stc(clu[, p_thresh, …]) | 
Assemble summary SourceEstimate from spatiotemporal cluster results. | 
Functions to compute connectivity (adjacency) matrices for cluster-level statistics
spatial_dist_connectivity(src, dist[, verbose]) | 
Compute connectivity from distances in a source space. | 
spatial_src_connectivity(src[, dist, verbose]) | 
Compute connectivity for a source space activation. | 
spatial_tris_connectivity(tris[, …]) | 
Compute connectivity from triangles. | 
spatial_inter_hemi_connectivity(src, dist[, …]) | 
Get vertices on each hemisphere that are close to the other hemisphere. | 
spatio_temporal_src_connectivity(src, n_times) | 
Compute connectivity for a source space activation over time. | 
spatio_temporal_tris_connectivity(tris, n_times) | 
Compute connectivity from triangles and time instants. | 
spatio_temporal_dist_connectivity(src, …) | 
Compute connectivity from distances in a source space and time instants. | 
Data simulation code.
simulate_evoked(fwd, stc, info, cov[, snr, …]) | 
Generate noisy evoked data. | 
simulate_raw(raw, stc, trans, src, bem[, …]) | 
Simulate raw data. | 
simulate_stc(src, labels, stc_data, tmin, tstep) | 
Simulate sources time courses from waveforms and labels. | 
simulate_sparse_stc(src, n_dipoles, times[, …]) | 
Generate sparse (n_dipoles) sources time courses from data_fun. | 
select_source_in_label(src, label[, …]) | 
Select source positions using a label. | 
Decoding analysis utilities.
Classes:
CSP([n_components, reg, log, cov_est, …]) | 
M/EEG signal decomposition using the Common Spatial Patterns (CSP). | 
EMS | 
Transformer to compute event-matched spatial filters. | 
FilterEstimator(info, l_freq, h_freq[, …]) | 
Estimator to filter RtEpochs. | 
GeneralizationAcrossTime([picks, cv, clf, …]) | 
Generalize across time and conditions. | 
LinearModel([model]) | 
Compute and store patterns from linear models. | 
PSDEstimator([sfreq, fmin, fmax, bandwidth, …]) | 
Compute power spectrum density (PSD) using a multi-taper method. | 
Scaler([info, scalings, with_mean, with_std]) | 
Standardize channel data. | 
TemporalFilter([l_freq, h_freq, sfreq, …]) | 
Estimator to filter data array along the last dimension. | 
TimeDecoding([picks, cv, clf, times, …]) | 
Train and test a series of classifiers at each time point. | 
TimeFrequency(frequencies[, sfreq, method, …]) | 
Time frequency transformer. | 
UnsupervisedSpatialFilter(estimator[, average]) | 
Use unsupervised spatial filtering across time and samples. | 
Vectorizer | 
Transform n-dimensional array into 2D array of n_samples by n_features. | 
Functions:
compute_ems(epochs[, conditions, picks, …]) | 
Compute event-matched spatial filter on epochs. | 
get_coef(estimator[, attr, inverse_transform]) | 
Retrieve the coefficients of an estimator ending with a Linear Model. | 
Module for realtime MEG data using mne_rt_server.
Classes:
RtEpochs(client, event_id, tmin, tmax[, …]) | 
Realtime Epochs. | 
RtClient(host[, cmd_port, data_port, …]) | 
Realtime Client. | 
MockRtClient(raw[, verbose]) | 
Mock Realtime Client. | 
FieldTripClient([info, host, port, …]) | 
Realtime FieldTrip client. | 
StimServer([port, n_clients]) | 
Stimulation Server. | 
StimClient(host[, port, timeout, verbose]) | 
Stimulation Client. | 
Generate html report from MNE database.
Classes:
Report([info_fname, subjects_dir, subject, …]) | 
Object for rendering HTML. |