mne.MixedSourceEstimate(data, vertices=None, tmin=None, tstep=None, subject=None, verbose=None)[source]¶Container for mixed surface and volume source estimates.
| Parameters: | data : array of shape (n_dipoles, n_times) | 2-tuple (kernel, sens_data) 
 vertices : list of arrays 
 tmin : scalar 
 tstep : scalar 
 subject : str | None 
 verbose : bool, str, int, or None 
  | 
|---|
Notes
New in version 0.9.0.
Attributes
data | 
Numpy array of source estimate data. | 
shape | 
Shape of the data. | 
| subject | (str | None) The subject name. | 
| times | (array of shape (n_times,)) The time vector. | 
| vertices | (list of arrays of shape (n_dipoles,)) The indices of the dipoles in each source space. | 
Methods
__add__(a) | 
Add source estimates. | 
__div__(a) | 
Divide source estimates. | 
__hash__() <==> hash(x) | 
|
__mul__(a) | 
Multiply source estimates. | 
__neg__() | 
Negate the source estimate. | 
__sub__(a) | 
Subtract source estimates. | 
bin(width[, tstart, tstop, func]) | 
Return a SourceEstimate object with data summarized over time bins. | 
copy() | 
Return copy of SourceEstimate instance. | 
crop([tmin, tmax]) | 
Restrict SourceEstimate to a time interval. | 
mean() | 
Make a summary stc file with mean power between tmin and tmax. | 
plot_surface(src[, subject, surface, hemi, …]) | 
Plot surface source estimates with PySurfer. | 
resample(sfreq[, npad, window, n_jobs, verbose]) | 
Resample data. | 
sqrt() | 
Take the square root. | 
time_as_index(times[, use_rounding]) | 
Convert time to indices. | 
to_data_frame([picks, index, scale_time, …]) | 
Export data in tabular structure as a pandas DataFrame. | 
transform(func[, idx, tmin, tmax, copy]) | 
Apply linear transform. | 
transform_data(func[, idx, tmin_idx, tmax_idx]) | 
Get data after a linear (time) transform has been applied. | 
__hash__() <==> hash(x)¶bin(width, tstart=None, tstop=None, func=<function mean>)[source]¶Return a SourceEstimate object with data summarized over time bins.
Time bins of width seconds. This method is intended for
visualization only. No filter is applied to the data before binning,
making the method inappropriate as a tool for downsampling data.
| Parameters: | width : scalar 
 tstart : scalar | None 
 tstop : scalar | None 
 func : callable 
  | 
|---|---|
| Returns: | stc : instance of SourceEstimate 
  | 
crop(tmin=None, tmax=None)[source]¶Restrict SourceEstimate to a time interval.
| Parameters: | tmin : float | None 
 tmax : float | None 
  | 
|---|
data¶Numpy array of source estimate data.
mean()[source]¶Make a summary stc file with mean power between tmin and tmax.
| Returns: | stc : instance of SourceEstimate 
  | 
|---|
plot_surface(src, subject=None, surface=’inflated’, hemi=’lh’, colormap=’auto’, time_label=’time=%02.f ms’, smoothing_steps=10, transparent=None, alpha=1.0, time_viewer=False, config_opts=None, subjects_dir=None, figure=None, views=’lat’, colorbar=True, clim=’auto’)[source]¶Plot surface source estimates with PySurfer.
Note: PySurfer currently needs the SUBJECTS_DIR environment variable, which will automatically be set by this function. Plotting multiple SourceEstimates with different values for subjects_dir will cause PySurfer to use the wrong FreeSurfer surfaces when using methods of the returned Brain object. It is therefore recommended to set the SUBJECTS_DIR environment variable or always use the same value for subjects_dir (within the same Python session).
| Parameters: | src : SourceSpaces 
 subject : str | None 
 surface : str 
 hemi : str, ‘lh’ | ‘rh’ | ‘split’ | ‘both’ 
 colormap : str | np.ndarray of float, shape(n_colors, 3 | 4) 
 time_label : str 
 smoothing_steps : int 
 transparent : bool | None 
 alpha : float 
 time_viewer : bool 
 config_opts : dict 
 subjects_dir : str 
 figure : instance of mayavi.core.scene.Scene | None 
 views : str | list 
 colorbar : bool 
 clim : str | dict 
  | 
|---|---|
| Returns: | brain : Brain 
  | 
resample(sfreq, npad=’auto’, window=’boxcar’, n_jobs=1, verbose=None)[source]¶Resample data.
| Parameters: | sfreq : float 
 npad : int | str 
 window : string or tuple 
 n_jobs : int 
 verbose : bool, str, int, or None 
  | 
|---|
Notes
For some data, it may be more accurate to use npad=0 to reduce artifacts. This is dataset dependent – check your data!
Note that the sample rate of the original data is inferred from tstep.
sfreq¶Sample rate of the data.
shape¶Shape of the data.
sqrt()[source]¶Take the square root.
| Returns: | stc : instance of SourceEstimate 
  | 
|---|
time_as_index(times, use_rounding=False)[source]¶Convert time to indices.
| Parameters: | times : list-like | float | int 
 use_rounding : boolean 
  | 
|---|---|
| Returns: | index : ndarray 
  | 
to_data_frame(picks=None, index=None, scale_time=1000.0, scalings=None, copy=True, start=None, stop=None)[source]¶Export data in tabular structure as a pandas DataFrame.
Columns and indices will depend on the object being converted. Generally this will include as much relevant information as possible for the data type being converted. This makes it easy to convert data for use in packages that utilize dataframes, such as statsmodels or seaborn.
| Parameters: | picks : array-like of int | None 
 index : tuple of str | None 
 scale_time : float 
 scalings : dict | None 
 copy : bool 
 start : int | None 
 stop : int | None 
  | 
|---|---|
| Returns: | df : instance of pandas.core.DataFrame 
  | 
transform(func, idx=None, tmin=None, tmax=None, copy=False)[source]¶Apply linear transform.
The transform is applied to each source time course independently.
| Parameters: | func : callable 
 idx : array | None 
 tmin : float | int | None 
 tmax : float | int | None 
 copy : bool 
  | 
|---|---|
| Returns: | stcs : instance of SourceEstimate | list 
  | 
Notes
Applying transforms can be significantly faster if the SourceEstimate object was created using “(kernel, sens_data)”, for the “data” parameter as the transform is applied in sensor space. Inverse methods, e.g., “apply_inverse_epochs”, or “lcmv_epochs” do this automatically (if possible).
transform_data(func, idx=None, tmin_idx=None, tmax_idx=None)[source]¶Get data after a linear (time) transform has been applied.
The transorm is applied to each source time course independently.
| Parameters: | func : callable 
 idx : array | None 
 tmin_idx : int | None 
 tmax_idx : int | None 
  | 
|---|---|
| Returns: | data_t : ndarray 
  | 
Notes
Applying transforms can be significantly faster if the SourceEstimate object was created using “(kernel, sens_data)”, for the “data” parameter as the transform is applied in sensor space. Inverse methods, e.g., “apply_inverse_epochs”, or “lcmv_epochs” do this automatically (if possible).