mne.decoding.
CSP
(n_components=4, reg=None, log=None, cov_est=’concat’, transform_into=’average_power’)[source]¶M/EEG signal decomposition using the Common Spatial Patterns (CSP).
This object can be used as a supervised decomposition to estimate spatial filters for feature extraction in a 2 class decoding problem. CSP in the context of EEG was first described in [1]; a comprehensive tutorial on CSP can be found in [2]. Multiclass solving is implemented from [3].
Parameters: | n_components : int, defaults to 4
reg : float | str | None, defaults to None
log : None | bool, defaults to None
cov_est : ‘concat’ | ‘epoch’, defaults to ‘concat’
transform_into : {‘average_power’, ‘csp_space’}
|
---|
References
Attributes
filters_ |
(ndarray, shape (n_channels, n_channels)) If fit, the CSP components used to decompose the data, else None. |
patterns_ |
(ndarray, shape (n_channels, n_channels)) If fit, the CSP patterns used to restore M/EEG signals, else None. |
mean_ |
(ndarray, shape (n_components,)) If fit, the mean squared power for each component. |
std_ |
(ndarray, shape (n_components,)) If fit, the std squared power for each component. |
Methods
__hash__ () <==> hash(x) |
|
fit (X, y) |
Estimate the CSP decomposition on epochs. |
fit_transform (X[, y]) |
Fit to data, then transform it. |
get_params ([deep]) |
Get parameters for this estimator. |
plot_filters (info[, components, ch_type, …]) |
Plot topographic filters of CSP components. |
plot_patterns (info[, components, ch_type, …]) |
Plot topographic patterns of CSP components. |
set_params (**params) |
Set the parameters of this estimator. |
transform (X) |
Estimate epochs sources given the CSP filters. |
__hash__
() <==> hash(x)¶fit
(X, y)[source]¶Estimate the CSP decomposition on epochs.
Parameters: | X : ndarray, shape (n_epochs, n_channels, n_times)
y : array, shape (n_epochs,)
|
---|---|
Returns: | self : instance of CSP
|
fit_transform
(X, y=None, **fit_params)[source]¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
---|---|
Returns: | X_new : numpy array of shape [n_samples, n_features_new]
|
get_params
(deep=True)[source]¶Get parameters for this estimator.
Parameters: | deep : boolean, optional
|
---|---|
Returns: | params : mapping of string to any
|
plot_filters
(info, components=None, ch_type=None, layout=None, vmin=None, vmax=None, cmap=’RdBu_r’, sensors=True, colorbar=True, scale=None, scale_time=1, unit=None, res=64, size=1, cbar_fmt=’%3.1f’, name_format=’CSP%01d’, proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines=’head’, contours=6, image_interp=’bilinear’, average=None, head_pos=None)[source]¶Plot topographic filters of CSP components.
The CSP filters are used to extract discriminant neural sources from the measured data (a.k.a. the backward model).
Parameters: | info : instance of Info
components : float | array of floats | None.
ch_type : ‘mag’ | ‘grad’ | ‘planar1’ | ‘planar2’ | ‘eeg’ | None
layout : None | Layout
vmin : float | callable
vmax : float | callable
cmap : matplotlib colormap | (colormap, bool) | ‘interactive’ | None
sensors : bool | str
colorbar : bool
scale : dict | float | None
scale_time : float | None
unit : dict | str | None
res : int
size : float
cbar_fmt : str
name_format : str
proj : bool | ‘interactive’
show : bool
show_names : bool | callable
title : str | None
mask : ndarray of bool, shape (n_channels, n_times) | None
mask_params : dict | None
outlines : ‘head’ | ‘skirt’ | dict | None
contours : int | False | None
image_interp : str
average : float | None
head_pos : dict | None
|
---|---|
Returns: | fig : instance of matplotlib.figure.Figure
|
plot_patterns
(info, components=None, ch_type=None, layout=None, vmin=None, vmax=None, cmap=’RdBu_r’, sensors=True, colorbar=True, scale=None, scale_time=1, unit=None, res=64, size=1, cbar_fmt=’%3.1f’, name_format=’CSP%01d’, proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines=’head’, contours=6, image_interp=’bilinear’, average=None, head_pos=None)[source]¶Plot topographic patterns of CSP components.
The CSP patterns explain how the measured data was generated from the neural sources (a.k.a. the forward model).
Parameters: | info : instance of Info
components : float | array of floats | None.
ch_type : ‘mag’ | ‘grad’ | ‘planar1’ | ‘planar2’ | ‘eeg’ | None
layout : None | Layout
vmin : float | callable
vmax : float | callable
cmap : matplotlib colormap | (colormap, bool) | ‘interactive’ | None
sensors : bool | str
colorbar : bool
scale : dict | float | None
scale_time : float | None
unit : dict | str | None
res : int
size : float
cbar_fmt : str
name_format : str
proj : bool | ‘interactive’
show : bool
show_names : bool | callable
title : str | None
mask : ndarray of bool, shape (n_channels, n_times) | None
mask_params : dict | None
outlines : ‘head’ | ‘skirt’ | dict | None
contours : int | False | None
image_interp : str
average : float | None
head_pos : dict | None
|
---|---|
Returns: | fig : instance of matplotlib.figure.Figure
|
set_params
(**params)[source]¶Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each
component of a nested object.
Returns
——-
self
transform
(X)[source]¶Estimate epochs sources given the CSP filters.
Parameters: | X : array, shape (n_epochs, n_channels, n_times)
|
---|---|
Returns: | X : ndarray
|