mne.decoding.CSP(n_components=4, reg=None, log=None, cov_est=’concat’, transform_into=’average_power’)[source]¶M/EEG signal decomposition using the Common Spatial Patterns (CSP).
This object can be used as a supervised decomposition to estimate spatial filters for feature extraction in a 2 class decoding problem. CSP in the context of EEG was first described in [1]; a comprehensive tutorial on CSP can be found in [2]. Multiclass solving is implemented from [3].
| Parameters: | n_components : int, defaults to 4 
 reg : float | str | None, defaults to None 
 log : None | bool, defaults to None 
 cov_est : ‘concat’ | ‘epoch’, defaults to ‘concat’ 
 transform_into : {‘average_power’, ‘csp_space’} 
  | 
|---|
References
Attributes
filters_ | 
(ndarray, shape (n_channels, n_channels)) If fit, the CSP components used to decompose the data, else None. | 
patterns_ | 
(ndarray, shape (n_channels, n_channels)) If fit, the CSP patterns used to restore M/EEG signals, else None. | 
mean_ | 
(ndarray, shape (n_components,)) If fit, the mean squared power for each component. | 
std_ | 
(ndarray, shape (n_components,)) If fit, the std squared power for each component. | 
Methods
__hash__() <==> hash(x) | 
|
fit(X, y) | 
Estimate the CSP decomposition on epochs. | 
fit_transform(X[, y]) | 
Fit to data, then transform it. | 
get_params([deep]) | 
Get parameters for this estimator. | 
plot_filters(info[, components, ch_type, …]) | 
Plot topographic filters of CSP components. | 
plot_patterns(info[, components, ch_type, …]) | 
Plot topographic patterns of CSP components. | 
set_params(**params) | 
Set the parameters of this estimator. | 
transform(X) | 
Estimate epochs sources given the CSP filters. | 
__hash__() <==> hash(x)¶fit(X, y)[source]¶Estimate the CSP decomposition on epochs.
| Parameters: | X : ndarray, shape (n_epochs, n_channels, n_times) 
 y : array, shape (n_epochs,) 
  | 
|---|---|
| Returns: | self : instance of CSP 
  | 
fit_transform(X, y=None, **fit_params)[source]¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: | X : numpy array of shape [n_samples, n_features] 
 y : numpy array of shape [n_samples] 
  | 
|---|---|
| Returns: | X_new : numpy array of shape [n_samples, n_features_new] 
  | 
get_params(deep=True)[source]¶Get parameters for this estimator.
| Parameters: | deep : boolean, optional 
  | 
|---|---|
| Returns: | params : mapping of string to any 
  | 
plot_filters(info, components=None, ch_type=None, layout=None, vmin=None, vmax=None, cmap=’RdBu_r’, sensors=True, colorbar=True, scale=None, scale_time=1, unit=None, res=64, size=1, cbar_fmt=’%3.1f’, name_format=’CSP%01d’, proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines=’head’, contours=6, image_interp=’bilinear’, average=None, head_pos=None)[source]¶Plot topographic filters of CSP components.
The CSP filters are used to extract discriminant neural sources from the measured data (a.k.a. the backward model).
| Parameters: | info : instance of Info 
 components : float | array of floats | None. 
 ch_type : ‘mag’ | ‘grad’ | ‘planar1’ | ‘planar2’ | ‘eeg’ | None 
 layout : None | Layout 
 vmin : float | callable 
 vmax : float | callable 
 cmap : matplotlib colormap | (colormap, bool) | ‘interactive’ | None 
 sensors : bool | str 
 colorbar : bool 
 scale : dict | float | None 
 scale_time : float | None 
 unit : dict | str | None 
 res : int 
 size : float 
 cbar_fmt : str 
 name_format : str 
 proj : bool | ‘interactive’ 
 show : bool 
 show_names : bool | callable 
 title : str | None 
 mask : ndarray of bool, shape (n_channels, n_times) | None 
 mask_params : dict | None 
 outlines : ‘head’ | ‘skirt’ | dict | None 
 contours : int | False | None 
 image_interp : str 
 average : float | None 
 head_pos : dict | None 
  | 
|---|---|
| Returns: | fig : instance of matplotlib.figure.Figure 
  | 
plot_patterns(info, components=None, ch_type=None, layout=None, vmin=None, vmax=None, cmap=’RdBu_r’, sensors=True, colorbar=True, scale=None, scale_time=1, unit=None, res=64, size=1, cbar_fmt=’%3.1f’, name_format=’CSP%01d’, proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines=’head’, contours=6, image_interp=’bilinear’, average=None, head_pos=None)[source]¶Plot topographic patterns of CSP components.
The CSP patterns explain how the measured data was generated from the neural sources (a.k.a. the forward model).
| Parameters: | info : instance of Info 
 components : float | array of floats | None. 
 ch_type : ‘mag’ | ‘grad’ | ‘planar1’ | ‘planar2’ | ‘eeg’ | None 
 layout : None | Layout 
 vmin : float | callable 
 vmax : float | callable 
 cmap : matplotlib colormap | (colormap, bool) | ‘interactive’ | None 
 sensors : bool | str 
 colorbar : bool 
 scale : dict | float | None 
 scale_time : float | None 
 unit : dict | str | None 
 res : int 
 size : float 
 cbar_fmt : str 
 name_format : str 
 proj : bool | ‘interactive’ 
 show : bool 
 show_names : bool | callable 
 title : str | None 
 mask : ndarray of bool, shape (n_channels, n_times) | None 
 mask_params : dict | None 
 outlines : ‘head’ | ‘skirt’ | dict | None 
 contours : int | False | None 
 image_interp : str 
 average : float | None 
 head_pos : dict | None 
  | 
|---|---|
| Returns: | fig : instance of matplotlib.figure.Figure 
  | 
set_params(**params)[source]¶Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.
Returns
——-
self
transform(X)[source]¶Estimate epochs sources given the CSP filters.
| Parameters: | X : array, shape (n_epochs, n_channels, n_times) 
  | 
|---|---|
| Returns: | X : ndarray 
  |