mne.decoding.PSDEstimator(sfreq=6.283185307179586, fmin=0, fmax=inf, bandwidth=None, adaptive=False, low_bias=True, n_jobs=1, normalization=’length’, verbose=None)[source]¶Compute power spectrum density (PSD) using a multi-taper method.
| Parameters: | sfreq : float 
 fmin : float 
 fmax : float 
 bandwidth : float 
 adaptive : bool 
 low_bias : bool 
 n_jobs : int 
 normalization : str 
 verbose : bool, str, int, or None 
  | 
|---|
See also
psd_multitaper
Methods
__hash__() <==> hash(x) | 
|
fit(epochs_data, y) | 
Compute power spectrum density (PSD) using a multi-taper method. | 
fit_transform(X[, y]) | 
Fit to data, then transform it. | 
transform(epochs_data[, y]) | 
Compute power spectrum density (PSD) using a multi-taper method. | 
__hash__() <==> hash(x)¶fit(epochs_data, y)[source]¶Compute power spectrum density (PSD) using a multi-taper method.
| Parameters: | epochs_data : array, shape (n_epochs, n_channels, n_times) 
 y : array, shape (n_epochs,) 
  | 
|---|---|
| Returns: | self : instance of PSDEstimator 
  | 
fit_transform(X, y=None, **fit_params)[source]¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: | X : numpy array of shape [n_samples, n_features] 
 y : numpy array of shape [n_samples] 
  | 
|---|---|
| Returns: | X_new : numpy array of shape [n_samples, n_features_new] 
  | 
transform(epochs_data, y=None)[source]¶Compute power spectrum density (PSD) using a multi-taper method.
| Parameters: | epochs_data : array, shape (n_epochs, n_channels, n_times) 
 y : None | array, shape (n_epochs,) 
  | 
|---|---|
| Returns: | psd : array, shape (n_signals, len(freqs)) or (len(freqs),) 
  |