mne.decoding.TimeFrequency(frequencies, sfreq=1.0, method=’morlet’, n_cycles=7.0, time_bandwidth=None, use_fft=True, decim=1, output=’complex’, n_jobs=1, verbose=None)[source]¶Time frequency transformer.
Time-frequency transform of times series along the last axis.
| Parameters: | frequencies : array-like of floats, shape (n_freqs,) 
 sfreq : float | int, defaults to 1.0 
 method : ‘multitaper’ | ‘morlet’, defaults to ‘morlet’ 
 n_cycles : float | array of float, defaults to 7.0 
 time_bandwidth : float, defaults to None 
 use_fft : bool, defaults to True 
 decim : int | slice, defaults to 1 
 output : str, defaults to ‘complex’ 
 n_jobs : int, defaults to 1 
 verbose : bool, str, int, or None, defaults to None 
  | 
|---|
Methods
__hash__() <==> hash(x) | 
|
fit(X[, y]) | 
Do nothing (for scikit-learn compatibility purposes). | 
fit_transform(X[, y]) | 
Time-frequency transform of times series along the last axis. | 
get_params([deep]) | 
Get parameters for this estimator. | 
set_params(**params) | 
Set the parameters of this estimator. | 
transform(X) | 
Time-frequency transform of times series along the last axis. | 
__hash__() <==> hash(x)¶fit(X, y=None)[source]¶Do nothing (for scikit-learn compatibility purposes).
| Parameters: | X : array, shape (n_samples, n_channels, n_times) 
 y : array | None 
  | 
|---|---|
| Returns: | self : object 
  | 
fit_transform(X, y=None)[source]¶Time-frequency transform of times series along the last axis.
| Parameters: | X : array, shape (n_samples, n_channels, n_times) 
 y : None 
  | 
|---|---|
| Returns: | Xt : array, shape (n_samples, n_channels, n_frequencies, n_times) 
  | 
get_params(deep=True)[source]¶Get parameters for this estimator.
| Parameters: | deep : boolean, optional 
  | 
|---|---|
| Returns: | params : mapping of string to any 
  | 
set_params(**params)[source]¶Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.
Returns
——-
self
transform(X)[source]¶Time-frequency transform of times series along the last axis.
| Parameters: | X : array, shape (n_samples, n_channels, n_times) 
  | 
|---|---|
| Returns: | Xt : array, shape (n_samples, n_channels, n_frequencies, n_times) 
  |