mne.io.BaseRaw(info, preload=False, first_samps=(0, ), last_samps=None, filenames=(None, ), raw_extras=(None, ), orig_format=’double’, dtype=<type ‘numpy.float64’>, verbose=None)[source]¶Base class for Raw data.
| Parameters: | info : dict 
 preload : bool | str | ndarray 
 first_samps : iterable 
 last_samps : iterable | None 
 filenames : tuple 
 raw_extras : list 
 orig_format : str 
 dtype : dtype | None 
 verbose : bool, str, int, or None 
  | 
|---|
See also
mne.io.RawNotes
The BaseRaw class is public to allow for stable type-checking in user
code (i.e., isinstance(my_raw_object, BaseRaw)) but should not be used
as a constructor for Raw objects (use instead one of the subclass
constructors, or one of the mne.io.read_raw_* functions).
Subclasses must provide the following methods:
- _read_segment_file(self, data, idx, fi, start, stop, cals, mult) (only needed for types that support on-demand disk reads)
 
Attributes
annotations | 
Annotations for marking segments of data. | 
ch_names | 
Channel names. | 
compensation_grade | 
The current gradient compensation grade. | 
filenames | 
The filenames used. | 
first_samp | 
The first data sample. | 
last_samp | 
The last data sample. | 
n_times | 
Number of time points. | 
proj | 
Whether or not projections are active. | 
times | 
Time points. | 
Methods
__contains__(ch_type) | 
Check channel type membership. | 
__getitem__(item) | 
Get raw data and times. | 
__hash__() | 
Hash the object. | 
__len__() | 
Return the number of time points. | 
add_channels(add_list[, force_update_info]) | 
Append new channels to the instance. | 
add_events(events[, stim_channel]) | 
Add events to stim channel. | 
add_proj(projs[, remove_existing, verbose]) | 
Add SSP projection vectors. | 
anonymize() | 
Anonymize measurement information in place. | 
append(raws[, preload]) | 
Concatenate raw instances as if they were continuous. | 
apply_function(fun[, picks, dtype, n_jobs]) | 
Apply a function to a subset of channels. | 
apply_gradient_compensation(grade[, verbose]) | 
Apply CTF gradient compensation. | 
apply_hilbert([picks, envelope, n_jobs, …]) | 
Compute analytic signal or envelope for a subset of channels. | 
apply_proj() | 
Apply the signal space projection (SSP) operators to the data. | 
close() | 
Clean up the object. | 
copy() | 
Return copy of Raw instance. | 
crop([tmin, tmax]) | 
Crop raw data file. | 
del_proj([idx]) | 
Remove SSP projection vector. | 
drop_channels(ch_names) | 
Drop some channels. | 
estimate_rank([tstart, tstop, tol, …]) | 
Estimate rank of the raw data. | 
filter(l_freq, h_freq[, picks, …]) | 
Filter a subset of channels. | 
get_data([picks, start, stop, …]) | 
Get data in the given range. | 
interpolate_bads([reset_bads, mode]) | 
Interpolate bad MEG and EEG channels. | 
load_bad_channels([bad_file, force]) | 
Mark channels as bad from a text file. | 
load_data([verbose]) | 
Load raw data. | 
notch_filter(freqs[, picks, filter_length, …]) | 
Notch filter a subset of channels. | 
pick_channels(ch_names) | 
Pick some channels. | 
pick_types([meg, eeg, stim, eog, ecg, emg, …]) | 
Pick some channels by type and names. | 
plot([events, duration, start, n_channels, …]) | 
Plot raw data. | 
plot_projs_topomap([ch_type, layout, axes]) | 
Plot SSP vector. | 
plot_psd([tmin, tmax, fmin, fmax, proj, …]) | 
Plot the power spectral density across channels. | 
plot_psd_topo([tmin, tmax, fmin, fmax, …]) | 
Plot channel-wise frequency spectra as topography. | 
plot_sensors([kind, ch_type, title, …]) | 
Plot sensor positions. | 
rename_channels(mapping) | 
Rename channels. | 
resample(sfreq[, npad, window, stim_picks, …]) | 
Resample all channels. | 
save(fname[, picks, tmin, tmax, …]) | 
Save raw data to file. | 
set_channel_types(mapping) | 
Define the sensor type of channels. | 
set_eeg_reference([ref_channels, verbose]) | 
Specify which reference to use for EEG data. | 
set_montage(montage[, verbose]) | 
Set EEG sensor configuration and head digitization. | 
time_as_index(times[, use_rounding]) | 
Convert time to indices. | 
to_data_frame([picks, index, scale_time, …]) | 
Export data in tabular structure as a pandas DataFrame. | 
__contains__(ch_type)[source]¶Check channel type membership.
| Parameters: | ch_type : str 
  | 
|---|---|
| Returns: | in : bool 
  | 
Examples
Channel type membership can be tested as:
>>> 'meg' in inst  
True
>>> 'seeg' in inst  
False
__getitem__(item)[source]¶Get raw data and times.
| Parameters: | item : tuple or array-like 
  | 
|---|---|
| Returns: | data : ndarray, shape (n_channels, n_times) 
 times : ndarray, shape (n_times,) 
  | 
Examples
Generally raw data is accessed as:
>>> data, times = raw[picks, time_slice]  
To get all data, you can thus do either of:
>>> data, times = raw[:]  
Which will be equivalent to:
>>> data, times = raw[:, :]  
To get only the good MEG data from 10-20 seconds, you could do:
>>> picks = mne.pick_types(raw.info, meg=True, exclude='bads')  
>>> t_idx = raw.time_as_index([10., 20.])  
>>> data, times = raw[picks, t_idx[0]:t_idx[1]]  
__len__()[source]¶Return the number of time points.
| Returns: | len : int 
  | 
|---|
Examples
This can be used as:
>>> len(raw)  
1000
add_channels(add_list, force_update_info=False)[source]¶Append new channels to the instance.
| Parameters: | add_list : list 
 force_update_info : bool 
  | 
|---|---|
| Returns: | inst : instance of Raw, Epochs, or Evoked 
  | 
add_events(events, stim_channel=None)[source]¶Add events to stim channel.
| Parameters: | events : ndarray, shape (n_events, 3) 
 stim_channel : str | None 
  | 
|---|
Notes
Data must be preloaded in order to add events.
add_proj(projs, remove_existing=False, verbose=None)[source]¶Add SSP projection vectors.
| Parameters: | projs : list 
 remove_existing : bool 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | self : instance of Raw | Epochs | Evoked 
  | 
annotations¶Annotations for marking segments of data.
anonymize()[source]¶Anonymize measurement information in place.
Reset ‘subject_info’, ‘meas_date’, ‘file_id’, and ‘meas_id’ keys if they
exist in info.
| Returns: | info : instance of Info 
  | 
|---|
Notes
Operates in place.
New in version 0.13.0.
append(raws, preload=None)[source]¶Concatenate raw instances as if they were continuous.
Note
Boundaries of the raw files are annotated bad. If you wish to
use the data as continuous recording, you can remove the
boundary annotations after concatenation (see
mne.Annotations.delete()).
| Parameters: | raws : list, or Raw instance 
 preload : bool, str, or None (default None) 
  | 
|---|
apply_function(fun, picks=None, dtype=None, n_jobs=1, *args, **kwargs)[source]¶Apply a function to a subset of channels.
The function “fun” is applied to the channels defined in “picks”. The data of the Raw object is modified inplace. If the function returns a different data type (e.g. numpy.complex) it must be specified using the dtype parameter, which causes the data type used for representing the raw data to change.
The Raw object has to have the data loaded e.g. with preload=True
or self.load_data().
Note
If n_jobs > 1, more memory is required as
len(picks) * n_times additional time points need to
be temporaily stored in memory.
Note
If the data type changes (dtype != None), more memory is required since the original and the converted data needs to be stored in memory.
| Parameters: | fun : function 
 picks : array-like of int (default: None) 
 dtype : numpy.dtype (default: None) 
 n_jobs: int (default: 1) 
 *args : 
 **kwargs : 
  | 
|---|---|
| Returns: | self : instance of Raw 
  | 
apply_gradient_compensation(grade, verbose=None)[source]¶Apply CTF gradient compensation.
Warning
The compensation matrices are stored with single precision, so repeatedly switching between different of compensation (e.g., 0->1->3->2) can increase numerical noise, especially if data are saved to disk in between changing grades. It is thus best to only use a single gradient compensation level in final analyses.
| Parameters: | grade : int 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | raw : instance of Raw 
  | 
apply_hilbert(picks=None, envelope=False, n_jobs=1, n_fft=’auto’, verbose=None)[source]¶Compute analytic signal or envelope for a subset of channels.
If envelope=False, the analytic signal for the channels defined in “picks” is computed and the data of the Raw object is converted to a complex representation (the analytic signal is complex valued).
If envelope=True, the absolute value of the analytic signal for the channels defined in “picks” is computed, resulting in the envelope signal.
Note
If envelope=False, more memory is required since the original raw data as well as the analytic signal have temporarily to be stored in memory.
Note
If n_jobs > 1, more memory is required as
len(picks) * n_times additional time points need to
be temporaily stored in memory.
| Parameters: | picks : array-like of int (default: None) 
 envelope : bool (default: False) 
 n_jobs: int 
 n_fft : int | None | str 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | self : instance of Raw 
  | 
Notes
The analytic signal “x_a(t)” of “x(t)” is:
x_a = F^{-1}(F(x) 2U) = x + i y
where “F” is the Fourier transform, “U” the unit step function, and “y” the Hilbert transform of “x”. One usage of the analytic signal is the computation of the envelope signal, which is given by “e(t) = abs(x_a(t))”. Due to the linearity of Hilbert transform and the MNE inverse solution, the enevlope in source space can be obtained by computing the analytic signal in sensor space, applying the MNE inverse, and computing the envelope in source space.
Also note that the n_fft parameter will allow you to pad the signal with zeros before performing the Hilbert transform. This padding is cut off, but it may result in a slightly different result (particularly around the edges). Use at your own risk.
apply_proj()[source]¶Apply the signal space projection (SSP) operators to the data.
| Returns: | self : instance of Raw | Epochs | Evoked 
  | 
|---|
Notes
Once the projectors have been applied, they can no longer be removed. It is usually not recommended to apply the projectors at too early stages, as they are applied automatically later on (e.g. when computing inverse solutions). Hint: using the copy method individual projection vectors can be tested without affecting the original data. With evoked data, consider the following example:
projs_a = mne.read_proj('proj_a.fif')
projs_b = mne.read_proj('proj_b.fif')
# add the first, copy, apply and see ...
evoked.add_proj(a).copy().apply_proj().plot()
# add the second, copy, apply and see ...
evoked.add_proj(b).copy().apply_proj().plot()
# drop the first and see again
evoked.copy().del_proj(0).apply_proj().plot()
evoked.apply_proj()  # finally keep both
ch_names¶Channel names.
close()[source]¶Clean up the object.
Does nothing for objects that close their file descriptors. Things like RawFIF will override this method.
compensation_grade¶The current gradient compensation grade.
crop(tmin=0.0, tmax=None)[source]¶Crop raw data file.
Limit the data from the raw file to go between specific times. Note that the new tmin is assumed to be t=0 for all subsequently called functions (e.g., time_as_index, or Epochs). New first_samp and last_samp are set accordingly.
| Parameters: | tmin : float 
 tmax : float | None 
  | 
|---|---|
| Returns: | raw : instance of Raw 
  | 
del_proj(idx=’all’)[source]¶Remove SSP projection vector.
| Parameters: | idx : int | list of int | str 
  | 
|---|---|
| Returns: | self : instance of Raw | Epochs | Evoked  | 
drop_channels(ch_names)[source]¶Drop some channels.
| Parameters: | ch_names : list 
  | 
|---|---|
| Returns: | inst : instance of Raw, Epochs, or Evoked 
  | 
See also
Notes
New in version 0.9.0.
estimate_rank(tstart=0.0, tstop=30.0, tol=0.0001, return_singular=False, picks=None, scalings=’norm’)[source]¶Estimate rank of the raw data.
This function is meant to provide a reasonable estimate of the rank. The true rank of the data depends on many factors, so use at your own risk.
| Parameters: | tstart : float 
 tstop : float | None 
 tol : float 
 return_singular : bool 
 picks : array_like of int, shape (n_selected_channels,) 
 scalings : dict | ‘norm’ 
  | 
|---|---|
| Returns: | rank : int 
 s : array 
  | 
Notes
If data are not pre-loaded, the appropriate data will be loaded by this function (can be memory intensive).
Projectors are not taken into account unless they have been applied to the data using apply_proj(), since it is not always possible to tell whether or not projectors have been applied previously.
Bad channels will be excluded from calculations.
filenames¶The filenames used.
filter(l_freq, h_freq, picks=None, filter_length=’auto’, l_trans_bandwidth=’auto’, h_trans_bandwidth=’auto’, n_jobs=1, method=’fir’, iir_params=None, phase=’zero’, fir_window=’hamming’, verbose=None)[source]¶Filter a subset of channels.
Applies a zero-phase low-pass, high-pass, band-pass, or band-stop
filter to the channels selected by picks. By default the data
of the Raw object is modified inplace.
The Raw object has to have the data loaded e.g. with preload=True
or self.load_data().
l_freq and h_freq are the frequencies below which and above
which, respectively, to filter out of the data. Thus the uses are:
l_freq < h_freq: band-pass filterl_freq > h_freq: band-stop filterl_freq is not None and h_freq is None: high-pass filterl_freq is None and h_freq is not None: low-pass filter
self.info['lowpass'] and self.info['highpass'] are only
updated with picks=None.
Note
If n_jobs > 1, more memory is required as
len(picks) * n_times additional time points need to
be temporaily stored in memory.
| Parameters: | l_freq : float | None 
 h_freq : float | None 
 picks : array-like of int | None 
 filter_length : str | int 
 l_trans_bandwidth : float | str 
 h_trans_bandwidth : float | str 
 n_jobs : int | str 
 method : str 
 iir_params : dict | None 
 phase : str 
 fir_window : str 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | raw : instance of Raw 
  | 
See also
mne.Epochs.savgol_filter, mne.io.Raw.notch_filter, mne.io.Raw.resample, mne.filter.filter_data, mne.filter.construct_iir_filter
Notes
For more information, see the tutorials Background information on filtering and Filtering and resampling data.
first_samp¶The first data sample.
get_data(picks=None, start=0, stop=None, reject_by_annotation=None, return_times=False)[source]¶Get data in the given range.
| Parameters: | picks : array-like of int | None 
 start : int 
 stop : int | None 
 reject_by_annotation : None | ‘omit’ | ‘NaN’ 
 return_times : bool 
  | 
|---|---|
| Returns: | data : ndarray, shape (n_channels, n_times) 
 times : ndarray, shape (n_times,) 
  | 
Notes
New in version 0.14.0.
interpolate_bads(reset_bads=True, mode=’accurate’)[source]¶Interpolate bad MEG and EEG channels.
Operates in place.
| Parameters: | reset_bads : bool 
 mode : str 
  | 
|---|---|
| Returns: | inst : instance of Raw, Epochs, or Evoked 
  | 
Notes
New in version 0.9.0.
last_samp¶The last data sample.
load_bad_channels(bad_file=None, force=False)[source]¶Mark channels as bad from a text file.
This function operates mostly in the style of the C function
mne_mark_bad_channels.
| Parameters: | bad_file : string 
 force : boolean 
  | 
|---|
load_data(verbose=None)[source]¶Load raw data.
| Parameters: | verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | raw : instance of Raw 
  | 
Notes
This function will load raw data if it was not already preloaded. If data were already preloaded, it will do nothing.
New in version 0.10.0.
n_times¶Number of time points.
notch_filter(freqs, picks=None, filter_length=’auto’, notch_widths=None, trans_bandwidth=1.0, n_jobs=1, method=’fft’, iir_params=None, mt_bandwidth=None, p_value=0.05, phase=’zero’, fir_window=’hamming’, verbose=None)[source]¶Notch filter a subset of channels.
Applies a zero-phase notch filter to the channels selected by “picks”. By default the data of the Raw object is modified inplace.
The Raw object has to have the data loaded e.g. with preload=True
or self.load_data().
Note
If n_jobs > 1, more memory is required as
len(picks) * n_times additional time points need to
be temporaily stored in memory.
| Parameters: | freqs : float | array of float | None 
 picks : array-like of int | None 
 filter_length : str | int 
 notch_widths : float | array of float | None 
 trans_bandwidth : float 
 n_jobs : int | str 
 method : str 
 iir_params : dict | None 
 mt_bandwidth : float | None 
 p_value : float 
 phase : str 
 fir_window : str 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | raw : instance of Raw 
  | 
See also
Notes
For details, see mne.filter.notch_filter().
pick_channels(ch_names)[source]¶Pick some channels.
| Parameters: | ch_names : list 
  | 
|---|---|
| Returns: | inst : instance of Raw, Epochs, or Evoked 
  | 
See also
Notes
New in version 0.9.0.
pick_types(meg=True, eeg=False, stim=False, eog=False, ecg=False, emg=False, ref_meg=’auto’, misc=False, resp=False, chpi=False, exci=False, ias=False, syst=False, seeg=False, dipole=False, gof=False, bio=False, ecog=False, fnirs=False, include=[], exclude=’bads’, selection=None)[source]¶Pick some channels by type and names.
| Parameters: | meg : bool | str 
 eeg : bool 
 stim : bool 
 eog : bool 
 ecg : bool 
 emg : bool 
 ref_meg: bool | str 
 misc : bool 
 resp : bool 
 chpi : bool 
 exci : bool 
 ias : bool 
 syst : bool 
 seeg : bool 
 dipole : bool 
 gof : bool 
 bio : bool 
 ecog : bool 
 fnirs : bool | str 
 include : list of string 
 exclude : list of string | str 
 selection : list of string 
  | 
|---|---|
| Returns: | inst : instance of Raw, Epochs, or Evoked 
  | 
Notes
New in version 0.9.0.
plot(events=None, duration=10.0, start=0.0, n_channels=20, bgcolor=’w’, color=None, bad_color=(0.8, 0.8, 0.8), event_color=’cyan’, scalings=None, remove_dc=True, order=’type’, show_options=False, title=None, show=True, block=False, highpass=None, lowpass=None, filtorder=4, clipping=None, show_first_samp=False)[source]¶Plot raw data.
| Parameters: | events : array | None 
 duration : float 
 start : float 
 n_channels : int 
 bgcolor : color object 
 color : dict | color object | None 
 bad_color : color object 
 event_color : color object | dict 
 scalings : dict | None 
 remove_dc : bool 
 order : str | array of int 
 show_options : bool 
 title : str | None 
 show : bool 
 block : bool 
 highpass : float | None 
 lowpass : float | None 
 filtorder : int 
 clipping : str | None 
 show_first_samp : bool 
  | 
|---|---|
| Returns: | fig : Instance of matplotlib.figure.Figure 
  | 
Notes
The arrow keys (up/down/left/right) can typically be used to navigate
between channels and time ranges, but this depends on the backend
matplotlib is configured to use (e.g., mpl.use(‘TkAgg’) should work). The
scaling can be adjusted with - and + (or =) keys. The viewport dimensions
can be adjusted with page up/page down and home/end keys. Full screen mode
can be to toggled with f11 key. To mark or un-mark a channel as bad, click
on the rather flat segments of a channel’s time series. The changes will be
reflected immediately in the raw object’s raw.info['bads'] entry.
plot_projs_topomap(ch_type=None, layout=None, axes=None)[source]¶Plot SSP vector.
| Parameters: | ch_type : ‘mag’ | ‘grad’ | ‘planar1’ | ‘planar2’ | ‘eeg’ | None | List 
 layout : None | Layout | List of Layouts 
 axes : instance of Axes | list | None 
  | 
|---|---|
| Returns: | fig : instance of matplotlib figure 
  | 
plot_psd(tmin=0.0, tmax=None, fmin=0, fmax=inf, proj=False, n_fft=None, picks=None, ax=None, color=’black’, area_mode=’std’, area_alpha=0.33, n_overlap=0, dB=True, average=None, show=True, n_jobs=1, line_alpha=None, spatial_colors=None, xscale=’linear’, verbose=None)[source]¶Plot the power spectral density across channels.
| Parameters: | tmin : float 
 tmax : float 
 fmin : float 
 fmax : float 
 proj : bool 
 n_fft : int | None 
 picks : array-like of int | None 
 ax : instance of matplotlib Axes | None 
 color : str | tuple 
 area_mode : str | None 
 area_alpha : float 
 n_overlap : int 
 dB : bool 
 average : bool 
 show : bool 
 n_jobs : int 
 line_alpha : float | None 
 spatial_colors : bool 
 xscale : str 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | fig : instance of matplotlib figure 
  | 
plot_psd_topo(tmin=0.0, tmax=None, fmin=0, fmax=100, proj=False, n_fft=2048, n_overlap=0, layout=None, color=’w’, fig_facecolor=’k’, axis_facecolor=’k’, dB=True, show=True, block=False, n_jobs=1, verbose=None)[source]¶Plot channel-wise frequency spectra as topography.
| Parameters: | tmin : float 
 tmax : float | None 
 fmin : float 
 fmax : float 
 proj : bool 
 n_fft : int 
 n_overlap : int 
 layout : instance of Layout | None 
 color : str | tuple 
 fig_facecolor : str | tuple 
 axis_facecolor : str | tuple 
 dB : bool 
 show : bool 
 block : bool 
 n_jobs : int 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | fig : instance of matplotlib figure 
  | 
plot_sensors(kind=’topomap’, ch_type=None, title=None, show_names=False, ch_groups=None, to_sphere=True, axes=None, block=False, show=True)[source]¶Plot sensor positions.
| Parameters: | kind : str 
 ch_type : None | str 
 title : str | None 
 show_names : bool 
 ch_groups : ‘position’ | array of shape (ch_groups, picks) | None 
 to_sphere : bool 
 axes : instance of Axes | instance of Axes3D | None 
 block : bool 
 show : bool 
  | 
|---|---|
| Returns: | fig : instance of matplotlib figure 
 selection : list 
  | 
See also
Notes
This function plots the sensor locations from the info structure using
matplotlib. For drawing the sensors using mayavi see
mne.viz.plot_trans().
New in version 0.12.0.
proj¶Whether or not projections are active.
rename_channels(mapping)[source]¶Rename channels.
| Parameters: | mapping : dict | callable 
  | 
|---|
Notes
New in version 0.9.0.
resample(sfreq, npad=’auto’, window=’boxcar’, stim_picks=None, n_jobs=1, events=None, verbose=None)[source]¶Resample all channels.
The Raw object has to have the data loaded e.g. with preload=True
or self.load_data().
Warning
The intended purpose of this function is primarily to speed up computations (e.g., projection calculation) when precise timing of events is not required, as downsampling raw data effectively jitters trigger timings. It is generally recommended not to epoch downsampled data, but instead epoch and then downsample, as epoching downsampled data jitters triggers. For more, see this illustrative gist.
If resampling the continuous data is desired, it is recommended to construct events using the original data. The event onsets can be jointly resampled with the raw data using the ‘events’ parameter.
| Parameters: | sfreq : float 
 npad : int | str 
 window : string or tuple 
 stim_picks : array of int | None 
 n_jobs : int | str 
 events : 2D array, shape (n_events, 3) | None 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | raw : instance of Raw 
  | 
See also
Notes
For some data, it may be more accurate to use npad=0 to reduce
artifacts. This is dataset dependent – check your data!
save(fname, picks=None, tmin=0, tmax=None, buffer_size_sec=None, drop_small_buffer=False, proj=False, fmt=’single’, overwrite=False, split_size=‘2GB’, verbose=None)[source]¶Save raw data to file.
| Parameters: | fname : string 
 picks : array-like of int | None 
 tmin : float | None 
 tmax : float | None 
 buffer_size_sec : float | None 
 drop_small_buffer : bool 
 proj : bool 
 fmt : str 
 overwrite : bool 
 split_size : string | int 
 verbose : bool, str, int, or None 
  | 
|---|
Notes
If Raw is a concatenation of several raw files, be warned that only the measurement information from the first raw file is stored. This likely means that certain operations with external tools may not work properly on a saved concatenated file (e.g., probably some or all forms of SSS). It is recommended not to concatenate and then save raw files for this reason.
set_channel_types(mapping)[source]¶Define the sensor type of channels.
| Parameters: | mapping : dict 
  | 
|---|
Notes
New in version 0.9.0.
set_eeg_reference(ref_channels=None, verbose=None)[source]¶Specify which reference to use for EEG data.
By default, MNE-Python will automatically re-reference the EEG signal to use an average reference (see below). Use this function to explicitly specify the desired reference for EEG. This can be either an existing electrode or a new virtual channel. This function will re-reference the data according to the desired reference and prevent MNE-Python from automatically adding an average reference.
Some common referencing schemes and the corresponding value for the
ref_channels parameter:
ref_channels=[]. This will prevent MNE-Python from
automatically re-referencing the data to an average reference.ref_channels=None.ref_channels to the name of the channel that will act as
the new reference.ref_channels to a list of channel names,
indicating which channels to use. For example, to apply an average
mastoid reference, when using the 10-20 naming scheme, set
ref_channels=['M1', 'M2'].| Parameters: | ref_channels : list of str | None 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | inst : instance of Raw | Epochs | Evoked 
  | 
See also
Notes
apply_proj() method to apply
them.New in version 0.13.0.
set_montage(montage, verbose=None)[source]¶Set EEG sensor configuration and head digitization.
| Parameters: | montage : instance of Montage or DigMontage 
 verbose : bool, str, int, or None 
  | 
|---|
Notes
Operates in place.
New in version 0.9.0.
time_as_index(times, use_rounding=False)[source]¶Convert time to indices.
| Parameters: | times : list-like | float | int 
 use_rounding : boolean 
  | 
|---|---|
| Returns: | index : ndarray 
  | 
times¶Time points.
to_data_frame(picks=None, index=None, scale_time=1000.0, scalings=None, copy=True, start=None, stop=None)[source]¶Export data in tabular structure as a pandas DataFrame.
Columns and indices will depend on the object being converted. Generally this will include as much relevant information as possible for the data type being converted. This makes it easy to convert data for use in packages that utilize dataframes, such as statsmodels or seaborn.
| Parameters: | picks : array-like of int | None 
 index : tuple of str | None 
 scale_time : float 
 scalings : dict | None 
 copy : bool 
 start : int | None 
 stop : int | None 
  | 
|---|---|
| Returns: | df : instance of pandas.core.DataFrame 
  |