mne.preprocessing.corrmap(icas, template, threshold=’auto’, label=None, ch_type=’eeg’, plot=True, show=True, verbose=None, outlines=’head’, layout=None, sensors=True, contours=6, cmap=None)[source]¶Find similar Independent Components across subjects by map similarity.
Corrmap (Viola et al. 2009 Clin Neurophysiol) identifies the best group match to a supplied template. Typically, feed it a list of fitted ICAs and a template IC, for example, the blink for the first subject, to identify specific ICs across subjects.
The specific procedure consists of two iterations. In a first step, the maps best correlating with the template are identified. In the step, the analysis is repeated with the mean of the maps identified in the first stage.
Run with plot and show set to True and label=False to find good parameters. Then, run with labelling enabled to apply the labelling in the IC objects. (Running with both plot and labels off does nothing.)
Outputs a list of fitted ICAs with the indices of the marked ICs in a specified field.
The original Corrmap website: www.debener.de/corrmap/corrmapplugin1.html
| Parameters: | icas : list of mne.preprocessing.ICA 
 template : tuple | np.ndarray, shape (n_components,) 
 threshold : “auto” | list of float | float 
 label : None | str 
 ch_type : ‘mag’ | ‘grad’ | ‘planar1’ | ‘planar2’ | ‘eeg’ 
 plot : bool 
 show : bool 
 verbose : bool, str, int, or None 
 outlines : ‘head’ | dict | None 
 layout : None | Layout | list of Layout 
 sensors : bool | str 
 contours : int | False | None 
 cmap : None | matplotlib colormap 
  | 
|---|---|
| Returns: | template_fig : fig 
 labelled_ics : fig 
  | 
mne.preprocessing.corrmap¶