mne.stats.permutation_t_test(X, n_permutations=10000, tail=0, n_jobs=1, verbose=None)[source]¶One sample/paired sample permutation test based on a t-statistic.
This function can perform the test on one variable or simultaneously on multiple variables. When applying the test to multiple variables, the “tmax” method is used for adjusting the p-values of each variable for multiple comparisons. Like Bonferroni correction, this method adjusts p-values in a way that controls the family-wise error rate. However, the permutation method will be more powerful than Bonferroni correction when different variables in the test are correlated.
| Parameters: | X : array of shape [n_samples x n_tests] 
 n_permutations : int or ‘all’ 
 tail : -1 or 0 or 1 (default = 0) 
 n_jobs : int 
 verbose : bool, str, int, or None 
  | 
|---|---|
| Returns: | T_obs : array of shape [n_tests] 
 p_values : array of shape [n_tests] 
 H0 : array of shape [n_permutations] 
  | 
Notes
A reference (among many) in field of neuroimaging: Nichols, T. E. & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15, 1-25. Overview of standard nonparametric randomization and permutation testing applied to neuroimaging data (e.g. fMRI) DOI: https://doi.org/10.1002/hbm.1058
mne.stats.permutation_t_test¶