Mitochondrial dysfunction may contribute to the development of insulin resistance and type 2 diabetes. Nucleoside reverse transcriptase inhibitors (NRTIs), specifically stavudine, are known to alter mitochondrial function in human immunodeficiency virus (HIV)-infected individuals, but the effects of stavudine on glucose disposal and mitochondrial function in muscle have not been prospectively evaluated. In this study, we investigated short-term stavudine administration among healthy control subjects to determine effects on insulin sensitivity.
The pathological accumulation of the β-amyloid protein (Aβ) has been closely associated with synaptic loss and neurotoxicity contributing to cognitive dysfunction in Alzheimer's disease (AD). Oligomers of Aβ42 appear to be the most neurotoxic form.
We have previously reported that chronic ibuprofen treatment improves cognition and decreases intracellular Aß and phosphorylated-tau levels in 3xTg-AD mice. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) that independently of its anti-inflammatory effects has anti-amyloidogenic activity as a gamma-secretase modulator (GSM) and both activities have the potential to decrease Aß pathology.
Prior studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may lower the incidence of Alzheimer's disease (AD) and delay onset or slow progression of symptoms in mouse models of AD. We examined the effects of chronic NSAID treatment in order to determine which elements of the pathological features might be ameliorated.
Diagnostic advancements for prostate cancer have so greatly increased early detections that hope abounds for improved patient outcomes. However, histopathology, which guides treatment, often subcategorizes aggressiveness insufficiently among moderately differentiated Gleason score (6 and 7) tumors (>70% of new cases). Here, we test the diagnostic capability of prostate metabolite profiles measured with intact tissue magnetic resonance spectroscopy and the sensitivity of local prostate metabolites in predicting prostate cancer status.
BACKGROUND: In clinical care of prostate cancer patients, an improved method to assess the risk of recurrence after surgical treatment is urgently needed. We aim to retrospectively evaluate the ability of ex vivo tissue magnetic-resonance-spectroscopy-based metabolomic profiles to estimate the risk of recurrence.
BACKGROUND: Prostate cancer (CaP) is one of the topmost diagnosed malignant diseases worldwide. In developed countries, early cancer detection methods have led to an increase of incidence rates over the last decades; however, with great variance of the prognosis. There is no diagnostic tool for an exact prediction of tumor aggressiveness, thus there is a lack of adequate and optimal treatment planning.
Over the past 30 years, continuous progress in the application of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance spectroscopic imaging (MRSI) to the detection, diagnosis and characterization of human prostate cancer has turned what began as scientific curiosity into a useful clinical option. In vivo MRSI technology has been integrated into the daily care of prostate cancer patients, and innovations in ex vivo methods have helped to establish NMR-based prostate cancer metabolomics.
Samples from human brains were examined with both stereologic methods for neuronal counting and high resolution magic angle spinning (HRMAS) proton magnetic resonance spectroscopy (1HMRS) for quantification of cellular metabolites. A statistically significant linear correlation between neuronal density and the concentration of N-acetylaspartate (NAA) in the superior temporal sulcus (STS) area was observed.